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Abstract

This paper investigates the dynamic stability of a pre-twisted cantilever beam spinning along its longitudinal axis
with a periodically varying speed and acted upon by an axial random force at the free end. The spin rate of the beam is
characterized as a small periodic perturbation superimposed on a constant speed, and the axial force is assumed as the
sum of a static force and a weakly stationary random process with a zero mean. Both the periodically varying spin rate
and the axial random force may lead to parametric instability of the beam. In this work, the finite element method is
applied first to get rid of the dependence on the spatial coordinate. The method of stochastic averaging is then adopted
to obtain Ito’s equations for the system response under different resonant frequency combinations. Finally, the first-
moment and the second-moment stability conditions of the beam are derived explicitly. Numerical results are presented
for a simple harmonic speed perturbation and a Gaussian white noise axial force.
© 2003 Published by Elsevier Ltd.
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1. Introduction

Drilling is one of the most widely used operations in manufacturing. In a drilling process, cutting
parameters, such as drill geometry, spin speed, thrust force, etc., will affect wear and breakage of the drill
and accuracy of the hole produced. Therefore, the dynamic behavior of drills has been an interesting topic
for research.

A standard twist drill looks like a solid bar having a length-to-diameter ratio about 10 or even higher. It
usually has two helical flutes and can be regarded as a pre-twisted beam with unequal flexural rigidity in
two orthogonal directions. Lots of references pertaining to the vibration of pre-twisted beams can be found
in the literature. Most of the works (Carnegie and Thomas, 1972; Rao, 1972; Swaminathan and Rao, 1977;
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Subrahmanyam et al., 1981; Subrahmanyam and Rao, 1982) concerned with the free vibration of turbine
blades and propellers, which are treated as pre-twisted, tapered cantilever beams rotating about the axis
perpendicular to the longitudinal axis of the beam.

When dealing with the dynamic behavior of drills, the axial force is an important factor and has to be
taken into consideration. Magrab and Gilsinn (1984) calculated the natural frequencies of a clamped-—
clamped pre-twisted beam under a static axial force by the Galerkin method. Tekinalp and Ulsoy (1989,
1990) investigated the free vibration of a spinning pre-twisted beam subjected to a static axial force by the
finite element method. An extensive study of the elastic stability of spinning, pre-twisted beams acted upon
by conservative axial forces was conducted by Liao and Dang (1992).

In fact, the axial force acting on drills usually fluctuates within a small range of variation during service.
Liao and Huang (1995a) analyzed the parametric stability of spinning pre-twisted beams under periodic
axial forces. Summed-type resonance is shown to exist due to this periodic axial force. Young and Gau
(2003) extended Liao and Huang’s efforts further to investigate the parametric random stability of spinning
pre-twisted beams subjected to axial random forces. Numerical results are given for a Gaussian white noise
excitation, and the effects of various system parameters on the mean-square stability boundary of the beam
are illustrated.

The spin rates of the pre-twisted beams considered in the above-mentioned references are constant. In
reality, the spin rate often varies within a small speed interval for most spinning objects under external
disturbances. Therefore, it would be more general and physically realistic to consider a time-dependent spin
rate for spinning objects. Kammer and Schlack (1987a,b) appeared to be the first ones to consider the
dynamic behavior of a uniform beam with a periodically varying angular speed. Summed-type resonance is
shown to exist due to this periodically varying angular speed. Dynamic responses of various rotating
structures with non-constant speeds were investigated by Young and his co-worker (1991, 1992, 1993).
Later Liao and Huang (1995b) also studied the parametric stability of pre-twisted beams spinning with
periodically varying speeds and subjected to static axial forces.

Therefore, this work extends the past efforts of the authors further to analyze the parametric random
stability of pre-twisted beams spinning with periodically varying speeds and acted upon by axial random
forces. Due to the periodically varying spin rate and the axial random force, the pre-twisted beam is
subjected to both parametric and parametric random excitations simultaneously. The method of stochastic
averaging (Sri Namachchivaya, 1989) is used to deal with both deterministic and random excitations at the
same time to obtain the system response.

2. Equations of motion

Consider a pre-twisted, cantilever beam of length L spinning along its longitudinal axis with a spin rate Q2
and subjected to an axial force P at its free end, as shown in Fig. 1. In this figure, (X,Y,Z) is a fixed
coordinate system, while (x,y,z) is a rotating coordinate system attached to the beam with the x-axis
aligned with the X-axis. The (x',)/,z) coordinate system rotates along the longitudinal axis of the beam
with a total pre-twisted angle y such that the y'- and z’-axes coincide with the principal axes of the beam at
every cross-section.

If every cross-section of the beam is symmetric with respect to two principal axes of inertia, torsional
coupling will not be presented, and only flexural bending is about to occur. In addition, flexural bending
takes place simultaneously in two mutually perpendicular planes with unequal flexural rigidity in these two
principal axes, and coupling arises due to the presence of the pre-twisted angle (Swaminathan and Rao,
1977). Thus the equations of motion and the boundary conditions for the pre-twisted, cantilever beam can
be derived as follows (Liao and Huang, 1995b):
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Fig. 1. A spinning pre-twisted cantilever beam subjected to an axial force at the free end.

Equations of motion
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where v and w are the displacement components of the neutral axis of the beam along the y- and z-axes,
respectively; p and 4 are the mass density and the cross-sectional area of the beam, respectively; ¢ and E are
the viscous damping coefficient and Young’s modulus of the beam, respectively; /,,, L. and [. are the
moments and product of area of the beam, respectively. Note that /,,, /.. and /. are related to the moments
of area about two principal axes I, and I, at every cross-section by

L, =1y, cos® yx/L + L. sin’ yx/L,
L. = L. cos® yx/L + Ly sin® yx/L, (2)
I}Z = %(Iz/z/ — Iy/y/) Sin ZVX/L
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Boundary conditions
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Eq. (1) is a set of coupled partial differential equations with time-dependent coefficients and cannot be
solved directly. Therefore, the dependence on the spatial coordinate is first eliminated from Eq. (1). Due to
the complexity in geometry, the eigen-solution of a pre-twisted beam cannot be found exactly (Rao, 1972).
Consequently, an approximate method has to be used to eliminate the dependence on the spatial coordi-
nate. In this work, the finite element method is adopted to obtain discretized system equations in time. Since
these two equations of motion are coupled and include the fourth-order derivatives with respect to the
spatial coordinate, the nodal variables should contain two nodal displacements (v, w) and two nodal slopes
(Ov/0x,0w/0x). For a two-noded element, the displacement field within an element is interpolated by

50 = D00, wn ) = Y00, )

where d; and e; are nodal parameters containing (v, dv/0x) and (w, dw/0x) at each node, respectively; ¥,(x)
are the Hermite cubic interpolation functions. Substituting the displacement field into the equations of
motion and going through the Galerkin procedure yields the discretized equation for the pre-twisted beam,

. c PL?
et + 28 (261 + 501+ (K] + (0] + P2k + 420G ) A =0, )
where y> = pAL*/EIly, and I, is the moment of area about the y-axis at the clamped end; [M], [G], [C], and
[K.] are the mass, gyroscopic, damping and elastic stiffness matrices, respectively; [K,| and [Q] are geometric

stiffness matrices due to spinning and the axial force, respectively; A is a column matrix formed by all nodal
parameters, and a overdot denotes a differentiation with respect to time z. Note that the matrices [M], [C],
[K.], [K,] and [Q] are symmetric, while [G] is skew-symmetric. Details of these matrices can be found in an
earlier research work conducted by the authors (Young and Gau, 2003).

Eq. (5) is a set of the second-order ordinary differential equations with variable coefficients. To improve
the solvability of Eq. (5), a modal analysis suitable for gyroscopic systems is applied to uncouple the un-
damped, autonomous terms in the equation. In this work, the spin rate of the beam is characterized as a
small periodic perturbation Q,(¢) superimposed on a constant speed Q,, and the axial force is assumed as
the sum of a static force Py and a weakly stationary random process with a zero mean P (¢), i.e.,
Q(t) = Qy + Q(¢) and P(¢) = Py + P,(¢). Therefore, Eq. (6) can be rewritten into a set of the first-order
differential equations in the non-dimensional form,

e P B Gl B el E]
*“2(29(’9‘”%)“0} [[01%“9’”“0} [[0”

2[5 4]
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where [K] = [Ki] + 122K + (PL2/EI)(Q], o = /204Dy, 7 = t/p and p = i

differentiation with respect to the dimensionless temporal variable 7 . The eigenvalues of the corresponding
undamped, autonomous system of Eq. (6), the system defined by the left-hand side of Eq. (6), appear in
complex conjugate pairs, i.e., s = +iw,, n =1,2,...,N, where w, are the non-dimensional natural fre-
quencies of the pre-twisted beam with a constant spin rate £y, and N is the total degrees of freedom of the
discretized system. The eigenvectors of the corresponding undamped, autonomous system of Eq. (6) also
appear in complex conjugate pairs, i.e., x =y, +iz,, n = 1,2,... N.

Introduce a linear transformation p = [R]g, where [R] is the matrix formed by all normalized y, and z,.
Substituting this transformation into Eq. (6), pre-multiplying the transpose of [R] and using the orthogo-
nality of eigenvectors yield the following partially uncoupled equation,

; a prime denotes a

¢+ [l = —{za[cw +2216+ (zQ g) K+ g+ e 1}g, )
where [A] is a block-diagonal matrix of the form
(4] = block-diagonal L‘)’ ‘(‘)"} (€] = uQ[R]" [ [[g]] {8” IR,

o1=wele”| o) (w1 = e | G m

R I e R AL

Again [C*] is symmetric, and [G*] is skew-symmetric due to the property of the congruent transformation.
The terms on the left-hand side of Eq. (7) are uncoupled in a block-wise sense; however, those on the right-
hand side of the equation are still coupled together. To match the form of [A], the matrices on the right-
hand side of the equation are partitioned into N2 blocks of 2 x 2 matrices. Hence, Eq. (7) can be rewritten
into the following form,
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where ¢, and 7, are the (2n — 1)th and the 2nth entries of ¢; ¢}, g7, k.7, k" and g, are the i~mth entries of
the n—jth blocks of [C*], [G*], [K*], [H*] and [Q], respectively.
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3. The method of stochastic averaging

The spin rate perturbation €(t) is assumed to be periodic and small compared to Q; therefore, Q,/Q,
can be expanded into a Fourier series of the form (Young, 1991),

Ql(‘f)
Q

M
= &> (fue 4 fre ), (9)
m=1

with B, = mp, where f is called the perturbation frequency; ¢ is a small parameter; f,, is the complex
conjugate of f,,. Assume the solutions of Eq. (8) to be of the form,
&, = z,ebt pz by —(z,e bt —ze AT n=1,2,... N, (10)

where k, = w,(1 —¢l)/f,, in which 1 is a detuning parameter. Substituting Egs. (9) and (10) into Eq. (8)
yields
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where 6,, = B,,/B,; «=ed and Pi(1)/Py = ¢"/?{(z) are assumed in order that the contributions of the
damping, periodic and random excitations to the system response are commensurable. The corresponding
equation for dz,/dr can be obtained by conjugating the above equation for dz,/dz.

To a first approximation, z,(t) may be replaced by the solutions of the time-averaged equations by using
the method of stochastic averaging (Khas'minskii, 1966). Upon applying the averaging procedure, there
exist three possible resonant frequency combinations of f, w, and w, to this order of approximation. All
three cases of frequency combinations will be investigated separately in the following.
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3.1. The case of B, = 2w,
In this case, d; = 2k,, and the averaged equations take the forms,
dz, = s{iwnﬂuzn —0(c,y, + o)z +é i[(qii + o +iq, —ia,,) (4, + a0 4, —i40,)z(S (k0 — 1) B,)
0 R DBD) + (gl — g~ 2~ gDl — a2+ gl + a5 s+ B
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— i ((k, + K,)ﬁs))]}d‘c + ZanrdB,. n=12....N; n#p, (12)
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. o 1T E ) . . .
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X 2p(S((15, = k) B,) = W (i, — k)B,)) + (ap — qpr — iapy — iq30) @)y — a3 + 19y + 1))

2N

x 2(S((0, + 1)) = W (5, + x)5.)] }dr + amdB, (13)

r=1
where S(w) =2 [, R(t)coswtdr and y(w) =2 [;° R(t)sinwtdr, in which R(t) is the autocorrelation
function of {(1); B, are mutually independent unit Wiener processes; a,, are elements of the diffusion matrix

[o]. Detail expressions for [co'] are given in Appendix A. Note that in Egs. (12) and (13), ¢!> = ¢?! and

nn
cll,ﬁ = 0127[17 are used since the matrix [C] is symmetric. The corresponding equation for z, can be obtained by

conjugating the above equation for z,.
3.2. The case of B, = w, + v,
In this case, d; = k, + k,, and the averaged equations take the forms,
. - . . P TIV | . . _
dz, = {M el )y — il — g2 — gl — gDz, — LA A 2 )z,
11 2 12 21 1 & 11 2 12 21\ 11 2 12 21
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X 2,(S((rg — 1) B,) + W (e, — 1) B,)) + (qy — a5 + 14, +14,)) (0, — 420 — 14y, — i97,)
2N

X Z4(S((15g + 1) B,) + W ((15g + 1,) B,))] }dr + > 4B, (15)
r=1

The equations for z,, n # p or g, are the same as Eq. (12).
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3.3. The case of B, = w, — w,

In this case, 6, = k, — k,, and the averaged equations take the forms,
= oy el Gy~ e 5 0~ A 4 A 4,
1 N
— fillyg + kg kg — )z, + o Z [ ap + 4y +igy —iq))(q) + qn + gy, —ig))
x 2,(S((1, = 1) B,) =W (5, = ) B,)) + (a — @) — i,y —i4;,)(9,, — a7, + gy, +1iq7)

X 2,(S((% + ).) — (5, + K)B)] }dr + amdB, (16)

- - - . . | .
dz, = g{la)q/aq — ot(c;; + c‘?;)zq — fs(g;; + g‘?; + 1g;127 — 1g§}17)zp + Efsﬁs(lh; + 1h§§ — h; + h?ll])zp

- . 1 ul . . .
— fillegy + kg +ikyy — kG)z, + 2 > [ ap + a +iq) —iq)(q + ai +iq); — iql)
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X 24(S((1g = 1) By) = W (g — k) B)) + (g — a5 — 194 — 1600 )(0yy — G0y + i3y + i)
x 2y (S((10g + 1) By) — W ((xy + Kr)ﬁs))} }df +Y 0,dB,. (17)

The equations for z,, n # p or g, are the same as Eq. (12).

4. Stability analysis

In this work, the first- and second-moment stability of the pre-twisted beam is considered. All three cases
of resonant frequency combinations will be investigated separately in the following.

4.1. The case of f, =~ 2w,

The differential equations governing the first-moment of the system response are obtained by taking the
expectation on both sides of Egs. (12) and (13). It is evident that the resulting equations will be the same as
Egs. (12) and (13) with the stochastic terms absent and the response variables z, and z, replaced by their
expectations, and the first-moment equations can be written as

%E[z,,] =a,Elz,] n=12,..,N; n#p,
d [EL) Elz) (18)
a | ) | = B

Note that the equations for E[z,] are mutually independent when n # p, but the equation for E[z,] is coupled
with the equation for E[z,]. The first-moment stability of the system is assured if all the expectations of the
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response variables are bounded, i.e., the first-moment stability of the system can be secured if every a, is
negative and if the real parts of the eigenvalues of [4,] are negative. It is found that the latter is stricter than
the former. Consequently, the first-moment stability criterion in this case corresponds to the one that
renders the real part of an eigenvalue of [4,] being zero.

By using Ito’s differential rule, the equations for d(z,z,), d(z,2,) and d(z;) can be obtained as follows:

2N
d(z.z,) = Un(ziz1, .. zvzy)de + Y (0,2,dB, + 0(),24dB,),  n # p, (19a)
r=1
2N
d(z,2) = Un(2z1, ... 22w, 2, 2)de + 3 (0,2,dB, + 6(yy),2,dB,), (19b)
r=1
2N
d(z) = Upn(z,2,2)dt + > 20,2,dB,, (19¢)
r=1

where U,, U, and U,, are functions given in Appendix A. The equation for 212, can be found by conjugating
Eq. (19¢). The differential equations governing the second-moment of the system response are obtained by
taking the expectation on both sides of Egs. (19a)-(19¢c) and the conjugation of Eq. (19¢). It is evident that
the resulting equations will be the same as Egs. (19a)—(19¢c) and the conjugation of Eq. (19¢) with the
stochastic terms absent and the response variables z,z,, z,z,, zf, and 212) replaced by their expectations, and the
second-moment equations can be written as

d

—Zy = |42, 20

2 = ] (20)
where Z,, = [E[z121], E[z222], - . . , ElzwZn], El2), E [Z;]]T. The second-moment stability of the system is assured

if Z,, is bounded, i.e., the second-moment stability of the system can be secured if the real parts of all
eigenvalues of [4,] are negative. Consequently, the second-moment stability criterion in this case corres-
ponds to the one that renders the real part of an eigenvalue of [4,] being zero.

4.2. The case of B, =~ w, + w,

Taking the expectation on both sides of Egs. (12), (14) and (15) yields

%E[zn] =a,Elz,] n=12,....,N; n#p,q,

d
dr

E[z,) (1)

E[z,]

E[z)]

=

Note that the equations for E[z,] are mutually independent when n # p and g, but the equation for E[z,] is
coupled with the equation for E[z,]. The first-moment stability of the system can be assured if every a, is
negative and if the real parts of the eigenvalues of [S;] are negative. It is found that the latter is more severe
than the former. Consequently, the first-moment stability criterion in this case corresponds to the one that
renders the real part of an eigenvalue of [S;] being zero.

By using Ito’s differential rule, the equations for d(z,z,), d(z,z,) and d(z,z,) can be obtained as follows:

2N
d(z,2,) = Ua (2121, - -, 2n2w, 22, 2020)dT + > (0,2,dB, + 61 ,2,dB,), (22a)

r=1
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2N
d(zz) = Un(2iz1, ... 2n2n, 270,52 )T + Y (002,dB, + 0(g4n),2,dB,), (22b)
r=1
2N
d(zpz,) = Ua(2,2p, 2424, 2pz4)dT + Z(Gp,.zqu, + 0,2,dB,), (22¢)

r=1

where Uy, Uy, and Ug are functions given in Appendix A. The equation for z,z, can be found by conju-
gating Eq. (22c). Taking the expectation on both sides of Egs. (19a), (22a)—(22¢) and the conjugation of
Eq. (22c¢) yields

d

—Z, = [S,]Z,, 23

2.~ 1802 23)
where Z; = [E[z1Z1), E[222,), . . . , E|znZn), E|zp2,), E [szq]]T. The second-moment stability of the system can be

assured if the real parts of all eigenvalues of [S,] are negative. Consequently, the second-moment stability
criterion in this case corresponds to the one that renders the real part of an eigenvalue of [S;] being zero.

4.3. The case of B, = w, — w,

Taking the expectation on both sides of Egs. (12), (16) and (17) yields

d
aE[z,,] =a,Elz,] n=12,....N; n#p,q,

d [Elz)] _ Elz,)]

- = [Di] :

d | Elz,] Elz,]
Again the equations for E[z,] are mutually independent when n # p and ¢, but the equation for E[z,] is
coupled with the equation for E[z,]. The first-moment stability of the system can be assured if every a, is
negative and if the real parts of the eigenvalues of [D;] are negative. It is found that the latter is stricter than
the former. Consequently, the first-moment stability criterion in this case corresponds to the one that

renders the real part of an eigenvalue of [D;] being zero.
By using Ito’s differential rule, the equations for d(z,z,), d(z,z,) and d(z,z,) can be obtained as follows:

(24)

2N
d(z,2,) = Uai (2121, - - - , ZNZN ZpZg: 22 )dT + Z(aprzde, + 0 (psn.2,dB,), (25a)
r=1
2N
d(ZqEq) = (/412(21217 . 7ZN2NaZp2q72qu)dT + Z(O'qrfquy + O'(q_*_N),qudB,.), (25b)
r=1
2N
d(z,2,) = Uis(22p, 220, 27)dT + Y _(04,2,dB, + 0(pix),2,dB,), (25¢)

r=1

where Uyi, Up, and Uy are functions given in Appendix A. The equation for z,z, can be found by con-
jugating Eq. (25¢). Taking the expectation on both sides of Eqs. (19a), (25a)—(25c) and the conjugation of
Eq. (25¢) yields

d

2= D2, (26)
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where Z, = [E[z121], E[z23), - - . , Elznzn], E[202,], E[Z02,]] - The second-moment stability of the system can be
assured if the real parts of all eigenvalues of [D,] are negative. Consequently, the second-moment stability
criterion in this case corresponds to the one that renders the real part of an eigenvalue of [D,] being zero.

5. Comparison with known results

When the axial force is static as the problem considered by Liao and Huang (1995b), i.e., the random
part is absent, the beam is subjected to a parametric excitation only due to the periodically varying spin
rate. In this situation, when the excitation frequency f; is near w, + ®,, the first-moment stability criterion
is still the one that renders the real part of an eigenvalue of [S;] in Eq. (21) being zero. That gives

11 22 11 22 =
PR R T \/ Ay Ay 7 (27)

0y + 0, ptaptentan
where
1 1
_ o, 1 2 12 21 1 2 . 12 21 1 2 12 21
Apg _fs{ [gpq ~ 8 +§'Bs(hpq + hpq) Tk — kpq] —H{_ 8ps ~ 8 +§Bs(hpq - hpq) — kg — kpq} }
and
_ 1 1
_ 5, 11 2 12 21 11 2 12 21 11 2 12 21
Agp _fs{ {gqp —8&pt Eﬂf(hqp + hqp) + kqp - kqp} +1 {gqp + 8 +§ﬁf( - hqp + hqp) +kqp + kqp} }

The detuning parameter 4 in Eq. (27) is the same as that obtained by Liao and Huang (1995b). For the
second-moment response, Eq. (23) can be divided into two parts: the equations for z,z,, n # p or ¢, which
are mutually independent, and the remaining four equations for z,z,, z,Z,, z,z, and z,z,, which are still
coupled in the absence of the random excitation. The second-moment response z,z, for n # p or ¢ decays
exponentially, and the second-moment stability of the system is determined by the boundedness of z,z,, z,Z,,
z,z, and Z,z,, or equivalently by the real part of an eigenvalue of the coefficient matrix of the equations for
ZpZp, Z4Zq, ZpZq and Z,z, being zero. That gives the same detuning parameter 4 shown in Eq. (27). Therefore,
in the absence of the random excitation, the first-moment and the second-moment stability criteria become
identical and are the same as that previously obtained by Liao and Huang (1995b). The case that f, is near
2w, can be obtained from the case that f; is near w, + w, by letting ¢ equal to p.

When the excitation frequency f; is near w, — w,, the first-moment stability criterion is still the one that
renders the real part of an eigenvalue of [D;] in Eq. (24) being zero. That gives

11 22 11 22
)=+ S + S + Cqq + Cyq ququ ) (28)
T 11 22 11 22 )

Wy + 0y Cpp T Cpp T Cpy T

where

o = 1 g 5 5 ) b | g ) i 61
and

= 1 [ 5 k2 g g ) 2 2|

The detuning parameter 4 in Eq. (28) is the same as that obtained by Liao and Huang (1995b). For the
second-moment response, Eq. (26) can be divided into two parts: the equations for z,z, , n # p or ¢, which
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are mutually independent, and the remaining four equations for z,z,, z,z,, z,z, and z,z,, which are still
coupled in the absence of the random excitation. The second-moment response z,z, for n # p or g decays
exponentially, and the second-moment stability of the system is determined by the boundedness of z,z,, z,Z,,
z,z, and z,z,, or equivalently by the real part of an eigenvalue of the coeflicient matrix of these four second-
moment equations being zero. That gives the same detuning parameter A shown in Eq. (28). Again, in the
absence of the random excitation, the first-moment and the second-moment stability criteria become
identical and are the same as that previously obtained by Liao and Huang (1995b).

When the spin rate of the beam is constant as the problem considered previously by the authors (2001),
the beam is acted upon by the random excitation only due to the axial force. In this situation, all the first-
moment equations are mutually independent, and the first-moment equations for different resonant fre-
quency combinations, Egs. (18), (21) and (24), reduce to the same form with 1 and f; equal to 0. Therefore,
the first-moment stability criterion is the boundedness of all the first-moment response E|z,], i.e., a, < 0 for

n=1,2,...,N, and is irrelevant to the resonant frequency combinations.
The second-moment equations under different resonant frequency combinations, Egs. (20), (23) and
(26), can be divided into two parts: the equations for z,z,, n = 1,2,..., N, which are still coupled in the

absence of the parametric excitation, and the remaining two mutually independent equations for zf] and ZIZJ
when f is close to 2w, for z,z, and z,Z, when f is near w, + w,, and for z,z, and z,z, when f_ is near
o, — w, . Since the equations for z,z, are self-complete, the remaining two equations for z2 and 2[2,, z,z, and
Z,Z,, OF 2,Z, and z,z, are redundant when considering the second-moment stability of the system. Therefore,
the second-moment stability of the system is determined by the boundedness of all z,z,, or equivalently by
the real part of an eigenvalue of the coefficient matrix of the equations for z,z, being zero. Note that the
equations for z,z, reduce to the same form for different resonant frequency combinations in the absence of

the spin rate perturbation and are the same as that obtained previously by the authors (2001).

6. Numerical results and discussions

Before formally presenting the numerical results for the stability analysis, convergence studies of the
finite element model have to be conducted first. According to the suggestion by the previous study (Liao
and Dang, 1992), 25 uniform elements are used to model the spinning pre-twisted beam in this work. The
numerical results for the lowest few natural frequencies agree excellently with those obtained by Liao and
Dang (1992). As an application of the general solution, the spin rate perturbation is taken as
Q,(t) = f cos ft, where f is assumed to be small compared to the average spin rate €,. Hence, the small
parameter ¢ is defined as ¢ = f/Qq. In addition, the random process P (¢) /P, is assumed as a Gaussian white
noise with a spectral density S; therefore, S(0) = S((x, £ x,)f) = S and ¥((x, £ x,)) = 0. However, nu-
merical results for more general periodic functions and other random processes can also be produced easily.
Moreover, all the numerical results in this work are presented in non-dimensional forms; therefore, f5, Q2
and P, in this section represent the non-dimensional expressions f/wy, €/, and PL?/El,, respectively,
where @, is the fundamental natural frequency of a free, non-spinning prismatic beam, i.e.,
Wy = 35156\/E10/pAL4

Fig. 2 shows the effect of the viscous damping of the beam on the first-moment and the second-moment
stability boundaries of a pre-twisted beam with a non-constant spin rate under an axial random force at the
first main resonance 8 =~ 2w;. In this figure, stability regions lie outside the stability boundaries. Note that,
in this case, the beam is stable when acted upon by the axial random force only; therefore, the stability
boundaries look like those subjected to the parametric excitation due to the spin rate perturbation only. It is
observed that an increase in the viscous damping will reduce the unstable regions predicted by the first-
moment and the second-moment stability criteria, respectively, and the effect on the second-moment sta-
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Fig. 2. The effect of the viscous damping on the stability boundaries of a pre-twisted cantilever beam with a non-constant spin rate
under an axial random force at the first main resonance f ~ 2w;. L/b = 10, h/b = 0.25,y = 90°, Qy = 0.1, P, = 0.5, S = 0.2. (a) First-
moment stability boundaries; (b) second-moment stability boundaries.

bility boundary is more remarkable than on the first-moment stability boundary. Therefore, the viscous
damping is favorable to the stability of the pre-twisted beam in this problem. Furthermore, the unstable
region predicted by the first-moment stability criterion is smaller than and lies inside the unstable region
predicted by the second-moment stability criterion; therefore, the first-moment stability criterion is less
conservative than the second-moment stability criterion.

Fig. 3 depicts the effect of the total pre-twisted angle y on the second-moment stability boundaries of the
system. One finds that unstable regions exist only at main resonances but not at sum-type or difference-type
resonances. As the angle y increases, the locations of the first and third main resonances move towards the
higher frequency domain, but that of the second main resonance moves towards the lower frequency do-
main. Moreover, the size of the unstable regions reduces gradually for higher main resonances. Note that
the height of the tip of an unstable region is a good measure of the size of it. The lower the height is, the
larger the unstable region is, and vice versa. Fig. 4 illustrates the heights of the tips of these unstable regions
with respect to the total pre-twisted angle. As the angle y increases, the height of the tip of the unstable
region at the first main resonance goes upwards; the height of the tip of the unstable region at the second
main resonance goes downwards, while that of the unstable region at the third main resonance goes up-
wards first and then falls down when the angle exceeds 130°. These phenomena relate excellently to the
trends of changes of the first three natural frequencies of the pre-twisted beam against increases in the pre-
twisted angle.

The effect of the average spin rate €, on the second-moment stability boundaries of the system is pre-
sented in Fig. 5. Again unstable regions exist only at main resonances, and the locations of the first and
third main resonances move towards the higher frequency domain, but that of the second main resonance
moves towards the lower frequency domain as the average spin rate increases. However, all unstable re-
gions become larger with an increase in the average spin rate. Consequently, the effect of the average spin
rate is destabilizing. The heights of the tips of the unstable regions of the pre-twisted beam with respect to
the average spin rate are shown in Fig. 6. As the average spin rate increases, the heights of the tips of all
unstable regions fall down drastically, and the tips of all unstable regions touch the horizontal axis at
Qy = 0.191, at which the pre-twisted beam is unstable when spinning with a constant rate and subjected to
the axial random force (Young and Gau, 2003). The stability boundaries of the system do not exist any
more for a further increase in Q.
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Fig. 3. The effect of the total pre-twisted angle on the second-moment stability boundaries of a pre-twisted cantilever beam with a non-
constant spin rate under an axial random force at the free end. L/b =10, 1/b = 0.25, 2 = 0.1, Q) = 0.1, P, = 0.5, S = 0.2. (a) y = 45°;
(b) y =90°; (c) y = 180°.
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Fig. 4. The heights of the tips of the second-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate
under an axial random force at the free end. L/b =10, h/b = 0.25, « = 0.1, Qy = 0.1, P, = 0.5, § =0.2.
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Fig. 5. The effect of the average spin rate on the second-moment stability boundaries of a pre-twisted cantilever beam with a non-
constant spin rate under an axial random force at the free end; L/b = 10, 1/b = 0.25, 2 = 0.1, y = 90°, P, = 0.5, S = 0.2. (a) Q, = 0.05;

(b) Qo = 0.1; (c) Q = 0.15.
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Fig. 6. The heights of the tips of the second-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate
under an axial random force at the free end. L/b =10, /b =0.25, 2 = 0.1, y =90°, B, = 0.5, S = 0.2.
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Fig. 7. The effect of the average axial force on the second-moment stability boundaries of a pre-twisted cantilever beam with a non-
constant spin rate under an axial random force at the free end. L/b = 10, h/b = 0.25, 0 = 0.1, y = 90°, @, = 0.1, § = 0.2. (a) B, = 0.3;
(b) P, =0.5; (c) B, =0.7.
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Fig. 8. The heights of the tips of the second-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate
under an axial random force at the free end. L/b =10, h/b = 0.25, « = 0.1, y = 90°, Q; = 0.1, S = 0.2.
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Fig. 7 depicts the effect of the average axial force Py on the second-moment stability boundaries of the
system. All unstable regions get larger and move towards the lower frequency domain with an increase
in the average axial force because an increase in the average axial force will reduce all natural frequencies of
the pre-twisted beam. Consequently, the effect of the average axial force is destabilizing. Fig. 8 illustrates
the heights of the tips of the unstable regions of the pre-twisted beam with respect to the average axial force.
As the average axial force increases, the heights of the tips of all unstable regions fall down slowly and drop
sharply as Py approaches 0.715, where the pre-twisted beam becomes unstable when spinning with a
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Fig. 9. The heights of the tips of the first-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate under
an axial random force at the free end. L/b =10, /b =0.25, « = 0.1, y = 90°, Q, = 0.1, B, = 0.5.
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Fig. 10. The effect of the spectral density of the axial random force on the second-moment stability boundaries of a pre-twisted
cantilever beam with a non-constant spin rate under an axial random force at the free end. L/b = 10, h/b = 0.25, o = 0.1, y = 90°,
Qy=0.1, P, = 0.5. (a) The first main resonance; (b) the second main resonance.
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constant rate and subjected to the axial random force (Young and Gau, 2003). The stability boundaries of
the system do not exist any more for a further increase in F.

The heights of the tips of the first-moment unstable regions of the pre-twisted beam with respect to the
spectral density of the random part of the axial force are presented in Fig. 9. It is observed that the height of
the tip of each unstable region is almost unchanged to the variation of the spectral density. Therefore, the
effect of the spectral density on the first-moment stability of the system is insignificant. But the effect of the
spectral density of the axial random force on the second-moment stability boundaries of the system is much
more visible, as shown in Fig. 10. In this figure, all unstable regions lower and widen as the spectral density
increases, and the effect on the first main resonance f§ ~ 2w, is more evident than on the second main
resonance f8 = 2w,. Therefore, the random part of the axial force is unfavorable to the second-moment
stability of the system.

7. Conclusions

The dynamic stability of a pre-twisted cantilever beam spinning along its longitudinal axis with a non-
constant spin rate and subjected to an axial random force at the free end is analyzed based on the theory of
both deterministic and stochastic averaging. The spin rate of the beam is characterized as the sum of a
constant (average) rate and a small, periodic perturbation function, and the axial force is assumed as the
sum of a static (average) force and a weakly stationary random process with a zero mean. It is demon-
strated that when the axial force is static, i.e., the beam is subjected to a deterministic parametric excitation
only due to the periodically varying spin rate, both the first-moment and the second-moment stability
criteria become identical and reduce to the result by Liao and Huang (1995b) at each resonant frequency
combination. When the spin rate is constant, i.e., the beam is subjected to a parametric random excitation
only due to the axial force, the first-moment stability criteria at different resonant frequency combinations
reduce to the same form, so are the second-moment stability criteria, which are the same as the result
obtained previously by the authors (2001).

As an application of the general solution, the spin rate perturbation is taken as a simple harmonic
function, and the random part of the axial force is assumed as a Gaussian white noise process in the nu-
merical illustrations. The effects of various system parameters on the first-moment and the second-moment
stability boundaries of the beam are investigated, and the following conclusions can be drawn:

(1) When the beam is stable if it is acted upon by the axial random force only, the stability boundaries of
the system when subjected to both deterministic (spin rate perturbation) and random (axial random
force) excitations look like the stability boundaries acted by the deterministic parametric excitation
only. When the beam is unstable if it is acted upon by the axial random force along, the beam is still
unstable when subjected to both deterministic and random excitations.

(2) For a beam with a periodically varying spin rate under an axial random force, unstable regions exist
only at main resonances but not at sum- or difference-type resonances, and the unstable regions reduce
gradually for higher main resonances.

(3) The viscous damping is favorable to the stability of the beam, and its effect on the second-moment sta-
bility boundaries is more remarkable than on the first-moment stability boundaries. The random part
of the axial force is unfavorable to the stability of the beam, and its effect on the first stability bound-
aries is insignificant.

(4) The effects of average spin rate and average axial force are destabilizing to the second-moment stability
of the beam at all main resonances, but the effect of the total pre-twisted angle to the second-moment
stability of the beam may be stabilizing or destabilizing at different main resonances.
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= g{l(wp + 0g)2pzg — (C,, + € = oy = Cu)ZpZg — [5( &g — &g — 1805 — 18)9)74%4
1
11 2 s 12 21y, = 1l 2122 12 20y, =
- fs(gqp 8 T8y lgqp)ZPZP - Efsﬂs(lhpq — i, +hy, + hpq)zqzq
1 11 2320 12 21 = 11 2 12 20y =
- Efsﬁs(lhqp —ih, +h,, +h,) 22, — filk,, — K, — ik, — ik, )z.z,
KU k2 k2 ik sz I & 11 22 s 12 s 2l 1l 2 s 12 s ool
= filkyy — kg — kg, — kg )zp2, + ¢ > la) +q +ig) —ig))(a) + qn +iq), —iq))
r=1

X 22 (S((15, = 15,) By) = W (15, = 1) B))) + (@ — e — 14 — i)
X (a1, — qi +iq)y + iq,0)22, (S((, + 1) B,) — W ((re, + 1) B,))]

N
o >y +ai +igy —iqo)(an + dn + gy — iq)zz(S((k, — )B,) — W ((k, — 1,)B,))
r=1

o | —

(g — 9g — 1y —105,) (9 = dg + 105 +1030)252(S (05 + 1) B) = iWp (g + m)l%))]}

+ 2 [(q},}, + 6, — 145,) (44 + a5y + 1945 — 145,)2,2,5(0)
+ (ghy + a2+ igl2 — ) (a + a2 + i) — a2z, (1, — k)8, (A-11)
Un(z1Z1, - - - s ZNZN, 2424, 2pZ4)
= F{ — 20(c,, + )22y — f(8pg + &py 18 — 185207, — %fxﬁs(ih};é +iltpg = hyg + Iy )Z2

— fillyy + k2 ik — ik )Z,z, — fu(g + G — 18 +i80)Zp7

T B A B B2, — Rk D ik iRz,

+ % EN; {[(q},l + 04 +45) = Gy — ) (@ — 42628 (1) — 16,) By)
+ gy — )@y +a0) + (a0 + @)@ — a0z (15, — 1) B,)
+ (g — )@y — am) + (ay + ) (@ + a3)122,S (15, + 15,) B,)
+ gy + )y —a5) — (@ — a0 a + a))zZ0 (K, + Kr)ﬁs)}}

& . . . . _
12 [(q},l —q,; —iqy —iq)) gy — @y +iq) +iq)))z2,S((k, + 1) B,)

r=1
+ (4 + a5 +ia, —iq) (g, + 4 — g, +i47)2,2:S((1, — Kp)ﬁs)} :
(A.12)
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Un (2121, . - . s ZNZN  ZpZg, ZpZq)
= p{ —26(cyy + Con)zgZg — (8o + Lo 18,0 — 1800) 72, + %ﬂﬁs(ih;}) +in —h + b))z,
R AL R, — el 4 g gl IR + 3B~ iy — 2 —
)22 — fullyy + Koy — kg + ik} )22, + % i: {[(Q§i +a) (g +a) — (ay — a3

— )22 (15 = 1) By) + [(ah — a2 (@) + ai) + (@b + o) (@l — a3) )220 (15 — 1) By)
+ gy — 4@y — @50) + @y + 00 (@1 + 439120248154 + 1) By) + (g4 + 430) (40 — o)

N
_ e . . .
— (4" — ) (@2 + ez (5, + x,.)m}} 30 [ - a2 — i — i)l — a2 +ia
r=1

+iq,)2,2:S((15g + 1) By) + (g + 45y + 6y — 195,) 4y + q5r — 19, +14,))2,2:5((15 — 1) B,) |
(A.13)

Uas(2p2p, 2424, 2p24)
_ : ao= s 012 0 22y = 11 2 s o122y =
= 3{ + i, — wy)Azp2, = A(c,, + € + Cop + €1 )Zp20 — [i(&py F &y + 18, —185)24%,

) . _ 1 . .
— fi(&yy + &5y — gy, +i83)22) — 5 FiBu (il + il — g + )z 2,

1 . . _ . . _
— Efsﬁs( —ihy —ih2 — h+ b)) - 2,27, — fulk + koy + ik — ikl )z.Z,

0| —

N
— Sk + K2 — k02 4 ik2)z,7, + Z,[(q;i +aq, +igy —iq)) (a0 + 4 +iq), — 19))77,

(S((15p = 1) By) = W (1, = 1) B)) + (g — @y — 14y — i)
1

Ay — @y + 14, +145,)2,2,(S (15, + 1) B,) — W (K, + 1,) B,))]

1 & . . . : _ .
32 [(qf,l +ay — gy +i0,)(q) + 0 — 1y +145)774(S((15, — 1) B,) + 1 (15 — 1) B,)

. & . . . . _
+ (g + Kr)ﬁs))} } +3 [(q},,‘, +q,, +iq,, —iq,))(q,) + 4, — gy, +145)2,2,S(0)

+ (a0 — @ — iy — i) (G0, — G + 1 + 1q00)2,2S (15, + 150) B) |- (A.14)
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