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Abstract

This paper investigates the dynamic stability of a pre-twisted cantilever beam spinning along its longitudinal axis

with a periodically varying speed and acted upon by an axial random force at the free end. The spin rate of the beam is

characterized as a small periodic perturbation superimposed on a constant speed, and the axial force is assumed as the

sum of a static force and a weakly stationary random process with a zero mean. Both the periodically varying spin rate

and the axial random force may lead to parametric instability of the beam. In this work, the finite element method is

applied first to get rid of the dependence on the spatial coordinate. The method of stochastic averaging is then adopted

to obtain Ito�s equations for the system response under different resonant frequency combinations. Finally, the first-

moment and the second-moment stability conditions of the beam are derived explicitly. Numerical results are presented

for a simple harmonic speed perturbation and a Gaussian white noise axial force.

� 2003 Published by Elsevier Ltd.
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1. Introduction

Drilling is one of the most widely used operations in manufacturing. In a drilling process, cutting

parameters, such as drill geometry, spin speed, thrust force, etc., will affect wear and breakage of the drill

and accuracy of the hole produced. Therefore, the dynamic behavior of drills has been an interesting topic

for research.

A standard twist drill looks like a solid bar having a length-to-diameter ratio about 10 or even higher. It

usually has two helical flutes and can be regarded as a pre-twisted beam with unequal flexural rigidity in
two orthogonal directions. Lots of references pertaining to the vibration of pre-twisted beams can be found

in the literature. Most of the works (Carnegie and Thomas, 1972; Rao, 1972; Swaminathan and Rao, 1977;
qThis paper was originally submitted to the special issue of Art Leissa published as vol. 40, no. 16.
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Subrahmanyam et al., 1981; Subrahmanyam and Rao, 1982) concerned with the free vibration of turbine

blades and propellers, which are treated as pre-twisted, tapered cantilever beams rotating about the axis

perpendicular to the longitudinal axis of the beam.

When dealing with the dynamic behavior of drills, the axial force is an important factor and has to be
taken into consideration. Magrab and Gilsinn (1984) calculated the natural frequencies of a clamped–

clamped pre-twisted beam under a static axial force by the Galerkin method. Tekinalp and Ulsoy (1989,

1990) investigated the free vibration of a spinning pre-twisted beam subjected to a static axial force by the

finite element method. An extensive study of the elastic stability of spinning, pre-twisted beams acted upon

by conservative axial forces was conducted by Liao and Dang (1992).

In fact, the axial force acting on drills usually fluctuates within a small range of variation during service.

Liao and Huang (1995a) analyzed the parametric stability of spinning pre-twisted beams under periodic

axial forces. Summed-type resonance is shown to exist due to this periodic axial force. Young and Gau
(2003) extended Liao and Huang�s efforts further to investigate the parametric random stability of spinning
pre-twisted beams subjected to axial random forces. Numerical results are given for a Gaussian white noise

excitation, and the effects of various system parameters on the mean-square stability boundary of the beam

are illustrated.

The spin rates of the pre-twisted beams considered in the above-mentioned references are constant. In

reality, the spin rate often varies within a small speed interval for most spinning objects under external

disturbances. Therefore, it would be more general and physically realistic to consider a time-dependent spin

rate for spinning objects. Kammer and Schlack (1987a,b) appeared to be the first ones to consider the
dynamic behavior of a uniform beam with a periodically varying angular speed. Summed-type resonance is

shown to exist due to this periodically varying angular speed. Dynamic responses of various rotating

structures with non-constant speeds were investigated by Young and his co-worker (1991, 1992, 1993).

Later Liao and Huang (1995b) also studied the parametric stability of pre-twisted beams spinning with

periodically varying speeds and subjected to static axial forces.

Therefore, this work extends the past efforts of the authors further to analyze the parametric random

stability of pre-twisted beams spinning with periodically varying speeds and acted upon by axial random

forces. Due to the periodically varying spin rate and the axial random force, the pre-twisted beam is
subjected to both parametric and parametric random excitations simultaneously. The method of stochastic

averaging (Sri Namachchivaya, 1989) is used to deal with both deterministic and random excitations at the

same time to obtain the system response.
2. Equations of motion

Consider a pre-twisted, cantilever beam of length L spinning along its longitudinal axis with a spin rate X
and subjected to an axial force P at its free end, as shown in Fig. 1. In this figure, ðX ; Y ; ZÞ is a fixed
coordinate system, while ðx; y; zÞ is a rotating coordinate system attached to the beam with the x-axis
aligned with the X -axis. The ðx0; y0; z0Þ coordinate system rotates along the longitudinal axis of the beam

with a total pre-twisted angle c such that the y 0- and z0-axes coincide with the principal axes of the beam at
every cross-section.
If every cross-section of the beam is symmetric with respect to two principal axes of inertia, torsional

coupling will not be presented, and only flexural bending is about to occur. In addition, flexural bending

takes place simultaneously in two mutually perpendicular planes with unequal flexural rigidity in these two

principal axes, and coupling arises due to the presence of the pre-twisted angle (Swaminathan and Rao,

1977). Thus the equations of motion and the boundary conditions for the pre-twisted, cantilever beam can

be derived as follows (Liao and Huang, 1995b):



Fig. 1. A spinning pre-twisted cantilever beam subjected to an axial force at the free end.
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Equations of motion
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where v and w are the displacement components of the neutral axis of the beam along the y- and z-axes,
respectively; q and A are the mass density and the cross-sectional area of the beam, respectively; c and E are
the viscous damping coefficient and Young�s modulus of the beam, respectively; Iyy , Izz and Iyz are the
moments and product of area of the beam, respectively. Note that Iyy , Izz and Iyz are related to the moments
of area about two principal axes Iy0y0 and Iz0z0 at every cross-section by
Iyy ¼ Iy0y0 cos2 cx=Lþ Iz0z0 sin
2 cx=L;

Izz ¼ Iz0z0 cos2 cx=Lþ Iy0y0 sin
2 cx=L;

Iyz ¼ 1
2
ðIz0z0 � Iy0y0 Þ sin 2cx=L:

ð2Þ
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Boundary conditions
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Eq. (1) is a set of coupled partial differential equations with time-dependent coefficients and cannot be
solved directly. Therefore, the dependence on the spatial coordinate is first eliminated from Eq. (1). Due to

the complexity in geometry, the eigen-solution of a pre-twisted beam cannot be found exactly (Rao, 1972).

Consequently, an approximate method has to be used to eliminate the dependence on the spatial coordi-

nate. In this work, the finite element method is adopted to obtain discretized system equations in time. Since

these two equations of motion are coupled and include the fourth-order derivatives with respect to the

spatial coordinate, the nodal variables should contain two nodal displacements ðv;wÞ and two nodal slopes
ðov=ox; ow=oxÞ. For a two-noded element, the displacement field within an element is interpolated by
vðx; tÞ ¼
X4
j¼1

djðtÞwjðxÞ; wðx; tÞ ¼
X4
j¼1

ejðtÞwjðxÞ; ð4Þ
where dj and ej are nodal parameters containing ðv; ov=oxÞ and ðw; ow=oxÞ at each node, respectively; wjðxÞ
are the Hermite cubic interpolation functions. Substituting the displacement field into the equations of

motion and going through the Galerkin procedure yields the discretized equation for the pre-twisted beam,
l2½M �€DD þ 2l2 X½G�
�

þ c
2qA

½C�
�
_DD þ ½Ke�

�
þ PL2

EI0
½Q� þ l2X2½Kg� þ l2 _XX½G�

�
D ¼ 0; ð5Þ
where l2 ¼ qAL4=EI0, and I0 is the moment of area about the y-axis at the clamped end; ½M �, ½G�, ½C�, and
½Ke� are the mass, gyroscopic, damping and elastic stiffness matrices, respectively; ½Kg� and ½Q� are geometric
stiffness matrices due to spinning and the axial force, respectively; D is a column matrix formed by all nodal
parameters, and a overdot denotes a differentiation with respect to time t. Note that the matrices ½M �, ½C�,
½Ke�, ½Kg� and ½Q� are symmetric, while ½G� is skew-symmetric. Details of these matrices can be found in an
earlier research work conducted by the authors (Young and Gau, 2003).

Eq. (5) is a set of the second-order ordinary differential equations with variable coefficients. To improve

the solvability of Eq. (5), a modal analysis suitable for gyroscopic systems is applied to uncouple the un-

damped, autonomous terms in the equation. In this work, the spin rate of the beam is characterized as a
small periodic perturbation X1ðtÞ superimposed on a constant speed X0, and the axial force is assumed as

the sum of a static force P0 and a weakly stationary random process with a zero mean P1ðtÞ, i.e.,
XðtÞ ¼ X0 þ X1ðtÞ and PðtÞ ¼ P0 þ P1ðtÞ. Therefore, Eq. (6) can be rewritten into a set of the first-order
differential equations in the non-dimensional form,
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where ½Kt� ¼ ½Ke� þ l2X2
0½Kg� þ ðP0L2=EI0Þ½Q�, a ¼ c=2qAX0, s ¼ t=l and p ¼ D0

D

� �
; a prime denotes a

differentiation with respect to the dimensionless temporal variable s . The eigenvalues of the corresponding
undamped, autonomous system of Eq. (6), the system defined by the left-hand side of Eq. (6), appear in
complex conjugate pairs, i.e., s ¼ 	ixn, n ¼ 1; 2; . . . ;N , where xn are the non-dimensional natural fre-

quencies of the pre-twisted beam with a constant spin rate X0, and N is the total degrees of freedom of the
discretized system. The eigenvectors of the corresponding undamped, autonomous system of Eq. (6) also

appear in complex conjugate pairs, i.e., x ¼ yn 	 izn, n ¼ 1; 2; . . . ;N .
Introduce a linear transformation p ¼ ½R�1, where ½R� is the matrix formed by all normalized yn and zn.

Substituting this transformation into Eq. (6), pre-multiplying the transpose of ½R� and using the orthogo-
nality of eigenvectors yield the following partially uncoupled equation,
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where ½K� is a block-diagonal matrix of the form
½K� ¼ block-diagonal 0 �xn

xn 0

� �
; ½C
� ¼ lX0½R�T
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Again ½C
� is symmetric, and ½G
� is skew-symmetric due to the property of the congruent transformation.
The terms on the left-hand side of Eq. (7) are uncoupled in a block-wise sense; however, those on the right-

hand side of the equation are still coupled together. To match the form of ½K�, the matrices on the right-
hand side of the equation are partitioned into N 2 blocks of 2� 2 matrices. Hence, Eq. (7) can be rewritten
into the following form,
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where nn and gn are the ð2n� 1Þth and the 2nth entries of 1; cimnj , g
im
nj , k
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nj , h

im
nj and qimnj are the i–mth entries of

the n–jth blocks of ½C
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3. The method of stochastic averaging

The spin rate perturbation X1ðsÞ is assumed to be periodic and small compared to X0; therefore, X1=X0

can be expanded into a Fourier series of the form (Young, 1991),
X1ðsÞ
X0

¼ e
XM
m¼1

ðfmeibms þ �ffme�ibmsÞ; ð9Þ
with bm ¼ mb, where b is called the perturbation frequency; e is a small parameter; �ffm is the complex
conjugate of fm. Assume the solutions of Eq. (8) to be of the form,
nn ¼ zneijnbss þ �zzne�ijnbss; gn ¼ iðzneijnbss � �zzne�ijnbssÞ; n ¼ 1; 2; . . . ;N ; ð10Þ
where jn ¼ xnð1� ekÞ=bs, in which k is a detuning parameter. Substituting Eqs. (9) and (10) into Eq. (8)
yields
dzn
ds

¼ e ixnkzn
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þOðe2Þ n ¼ 1; 2; . . . ;N ; ð11Þ
where dm ¼ bm=bs; a ¼ e~aa and P1ðsÞ=P0 ¼ e1=2fðsÞ are assumed in order that the contributions of the
damping, periodic and random excitations to the system response are commensurable. The corresponding

equation for d�zzn=ds can be obtained by conjugating the above equation for dzn=ds.
To a first approximation, znðsÞ may be replaced by the solutions of the time-averaged equations by using

the method of stochastic averaging (Khas�minskii, 1966). Upon applying the averaging procedure, there
exist three possible resonant frequency combinations of bs, xp and xq to this order of approximation. All

three cases of frequency combinations will be investigated separately in the following.
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3.1. The case of bs 
 2xp

In this case, ds ¼ 2jp, and the averaged equations take the forms,(
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where SðxÞ ¼ 2 1

0
RðsÞ cosxsds and wðxÞ ¼ 2 1

0
RðsÞ sinxsds, in which RðsÞ is the autocorrelation

function of fðsÞ; Br are mutually independent unit Wiener processes; rnr are elements of the diffusion matrix

r½ �. Detail expressions for ½rrT� are given in Appendix A. Note that in Eqs. (12) and (13), c12nn ¼ c21nn and
c12pp ¼ c21pp are used since the matrix ½C� is symmetric. The corresponding equation for �zzp can be obtained by
conjugating the above equation for zp.

3.2. The case of bs 
 xp þ xq

In this case, ds ¼ jp þ jq, and the averaged equations take the forms,
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The equations for zn, n 6¼ p or q, are the same as Eq. (12).
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3.3. The case of bs 
 xp � xq

In this case, ds ¼ jp � jq, and the averaged equations take the forms,
dzp ¼ e ixpkzp
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� zpðSððjp þ jrÞbsÞ � iwððjp þ jrÞbsÞÞ
i)
ds þ

X2N
r¼1

rprdBr; ð16Þ
dzq ¼ e ixqkzq

(
� ~aaðc11qq þ c22qqÞzq � �ffsðg11qp þ g22qp þ ig12qp � ig21qpÞzp þ

1

2
�ffsbsðih11qp þ ih22qp � h12qp þ h21qpÞzp

� �ffsðk11qp þ k22qp þ ik12qp � ik21qpÞzp þ
1

8

XN
r¼1

ðq11qr
h

þ q22qr þ iq12qr � iq21qr Þðq11rq þ q22rq þ iq12rq � iq21rq Þ

� zqðSððjq � jrÞbsÞ � iwððjq � jrÞbsÞÞ þ ðq11qr � q22qr � iq12qr � iq21qr Þðq11rq � q22rq þ iq12rq þ iq21rq Þ

� zqðSððjq þ jrÞbsÞ � iwððjq þ jrÞbsÞÞ
i)
ds þ

X2N
r¼1

rqrdBr: ð17Þ
The equations for zn, n 6¼ p or q, are the same as Eq. (12).
4. Stability analysis

In this work, the first- and second-moment stability of the pre-twisted beam is considered. All three cases

of resonant frequency combinations will be investigated separately in the following.
4.1. The case of bs 
 2xp

The differential equations governing the first-moment of the system response are obtained by taking the

expectation on both sides of Eqs. (12) and (13). It is evident that the resulting equations will be the same as

Eqs. (12) and (13) with the stochastic terms absent and the response variables zn and �zzn replaced by their
expectations, and the first-moment equations can be written as
d

ds
E½zn� ¼ anE½zn� n ¼ 1; 2; :::;N ; n 6¼ p;

d

ds

E½zp�
E½�zzp�

" #
¼ ½A1�

E½zp�
E½�zzp�

" #
:

ð18Þ
Note that the equations for E½zn� are mutually independent when n 6¼ p, but the equation for E½zp� is coupled
with the equation for E½�zzp�. The first-moment stability of the system is assured if all the expectations of the
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response variables are bounded, i.e., the first-moment stability of the system can be secured if every an is
negative and if the real parts of the eigenvalues of ½A1� are negative. It is found that the latter is stricter than
the former. Consequently, the first-moment stability criterion in this case corresponds to the one that

renders the real part of an eigenvalue of ½A1� being zero.
By using Ito�s differential rule, the equations for dðzn�zznÞ, dðzp�zzpÞ and dðz2pÞ can be obtained as follows:
dðzn�zznÞ ¼ Unðz1�zz1; . . . ; zN�zzN Þds þ
X2N
r¼1

ðrnr�zzndBr þ rðnþNÞ;rzndBrÞ; n 6¼ p; ð19aÞ

dðzp�zzpÞ ¼ Up1ðz1�zz1; . . . ; zN�zzN ; z2p;�zz2pÞds þ
X2N
r¼1

ðrpr�zzpdBr þ rðpþNÞ;rzpdBrÞ; ð19bÞ

dðz2pÞ ¼ Up2ðzp�zzp; z2pÞds þ
X2N
r¼1
2rprzpdBr; ð19cÞ
where Un, Up1 and Up2 are functions given in Appendix A. The equation for �zz2p can be found by conjugating
Eq. (19c). The differential equations governing the second-moment of the system response are obtained by
taking the expectation on both sides of Eqs. (19a)–(19c) and the conjugation of Eq. (19c). It is evident that

the resulting equations will be the same as Eqs. (19a)–(19c) and the conjugation of Eq. (19c) with the

stochastic terms absent and the response variables zn�zzn, zp�zzp, z2p and �zz
2
p replaced by their expectations, and the

second-moment equations can be written as
d

ds
Zm ¼ ½A2�Zm; ð20Þ
where Zm ¼ ½E½z1�zz1�;E½z2�zz2�; . . . ;E½zN�zzN �;E½z2p�;E½�zz2p��
T
. The second-moment stability of the system is assured

if Zm is bounded, i.e., the second-moment stability of the system can be secured if the real parts of all

eigenvalues of ½A2� are negative. Consequently, the second-moment stability criterion in this case corres-
ponds to the one that renders the real part of an eigenvalue of ½A2� being zero.
4.2. The case of bs 
 xp þ xq

Taking the expectation on both sides of Eqs. (12), (14) and (15) yields
d

ds
E½zn� ¼ anE½zn� n ¼ 1; 2; . . . ;N ; n 6¼ p; q;

d

ds

E½zp�
E½�zzq�

" #
¼ ½S1�

E½zp�
E½�zzq�

" #
:

ð21Þ
Note that the equations for E½zn� are mutually independent when n 6¼ p and q, but the equation for E½zp� is
coupled with the equation for E½�zzq�. The first-moment stability of the system can be assured if every an is
negative and if the real parts of the eigenvalues of ½S1� are negative. It is found that the latter is more severe
than the former. Consequently, the first-moment stability criterion in this case corresponds to the one that

renders the real part of an eigenvalue of ½S1� being zero.
By using Ito�s differential rule, the equations for dðzp�zzpÞ, dðzq�zzqÞ and dðzp�zzqÞ can be obtained as follows:
dðzp�zzpÞ ¼ Us1ðz1�zz1; . . . ; zN�zzN ; zpzq;�zzp�zzqÞds þ
X2N
r¼1

ðrpr�zzpdBr þ rðpþNÞ;rzpdBrÞ; ð22aÞ
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dðzq�zzqÞ ¼ Us2ðz1�zz1; . . . ; zN�zzN ; zpzq;�zzp�zzqÞds þ
X2N
r¼1

ðrqr�zzqdBr þ rðqþNÞ;rzqdBrÞ; ð22bÞ

dðzpzqÞ ¼ Us3ðzp�zzp; zq�zzq; zpzqÞds þ
X2N
r¼1

ðrprzqdBr þ rqrzpdBrÞ; ð22cÞ
where Us1, Us2 and Us3 are functions given in Appendix A. The equation for �zzp�zzq can be found by conju-
gating Eq. (22c). Taking the expectation on both sides of Eqs. (19a), (22a)–(22c) and the conjugation of

Eq. (22c) yields
d

ds
Zs ¼ ½S2�Zs; ð23Þ
where Zs ¼ ½E½z1�zz1�;E½z2�zz2�; . . . ;E½zN�zzN �;E½zpzq�;E½�zzp�zzq��T. The second-moment stability of the system can be
assured if the real parts of all eigenvalues of ½S2� are negative. Consequently, the second-moment stability
criterion in this case corresponds to the one that renders the real part of an eigenvalue of ½S2� being zero.
4.3. The case of bs 
 xp � xq

Taking the expectation on both sides of Eqs. (12), (16) and (17) yields
d

ds
E½zn� ¼ anE½zn� n ¼ 1; 2; . . . ;N ; n 6¼ p; q;

d

ds

E½zp�
E½zq�

� �
¼ ½D1�

E½zp�
E½zq�

� �
:

ð24Þ
Again the equations for E½zn� are mutually independent when n 6¼ p and q, but the equation for E½zp� is
coupled with the equation for E½zq�. The first-moment stability of the system can be assured if every an is
negative and if the real parts of the eigenvalues of ½D1� are negative. It is found that the latter is stricter than
the former. Consequently, the first-moment stability criterion in this case corresponds to the one that

renders the real part of an eigenvalue of ½D1� being zero.
By using Ito�s differential rule, the equations for dðzp�zzpÞ, dðzq�zzqÞ and dðzp�zzqÞ can be obtained as follows:
dðzp�zzpÞ ¼ Ud1ðz1�zz1; . . . ; zN�zzN ; zp�zzq;�zzpzqÞds þ
X2N
r¼1

ðrpr�zzpdBr þ rðpþNÞ;rzpdBrÞ; ð25aÞ

dðzq�zzqÞ ¼ Ud2ðz1�zz1; . . . ; zN�zzN ; zp�zzq;�zzpzqÞds þ
X2N
r¼1

ðrqr�zzqdBr þ rðqþNÞ;rzqdBrÞ; ð25bÞ

dðzp�zzqÞ ¼ Ud3ðzp�zzp; zq�zzq; zp�zzqÞds þ
X2N
r¼1

ðrqr�zzpdBr þ rðpþNÞ;rzqdBrÞ; ð25cÞ
where Ud1, Ud2 and Ud3 are functions given in Appendix A. The equation for �zzpzq can be found by con-
jugating Eq. (25c). Taking the expectation on both sides of Eqs. (19a), (25a)–(25c) and the conjugation of

Eq. (25c) yields
d

ds
Zd ¼ ½D2�Zd ; ð26Þ
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where Zd ¼ ½E½z1�zz1�;E½z2�zz2�; . . . ;E½zN�zzN �;E½zp�zzq�;E½�zzpzq��T. The second-moment stability of the system can be
assured if the real parts of all eigenvalues of ½D2� are negative. Consequently, the second-moment stability
criterion in this case corresponds to the one that renders the real part of an eigenvalue of ½D2� being zero.
5. Comparison with known results

When the axial force is static as the problem considered by Liao and Huang (1995b), i.e., the random

part is absent, the beam is subjected to a parametric excitation only due to the periodically varying spin

rate. In this situation, when the excitation frequency bs is near xp þ xq, the first-moment stability criterion

is still the one that renders the real part of an eigenvalue of ½S1� in Eq. (21) being zero. That gives
k ¼ 	
c11pp þ c22pp þ c11qq þ c22qq

xp þ xq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kpq

�KKqp

c11pp þ c22pp þ c11qq þ c22qq
� ~aa2

s
; ð27Þ
where
Kpq ¼ fs g11pq

��
� g22pq þ

1

2
bsðh12pq þ h21pqÞ þ k11pq � k22pq

�
þ i
�
� g12pq � g21pq þ

1

2
bsðh11pq � h22pqÞ � k12pq � k21pq

��
and
�KKqp ¼ fs g11qp

��
� g22qp þ

1

2
bsðh12qp þ h21qpÞ þ k11qp � k22qp

�
þ i g12qp
�

þ g21qp þ
1

2
bsð � h11qp þ h22qpÞ þ k12qp þ k21qp

��
:

The detuning parameter k in Eq. (27) is the same as that obtained by Liao and Huang (1995b). For the
second-moment response, Eq. (23) can be divided into two parts: the equations for zn�zzn, n 6¼ p or q, which
are mutually independent, and the remaining four equations for zp�zzp, zq�zzq, zpzq and �zzp�zzq, which are still
coupled in the absence of the random excitation. The second-moment response zn�zzn for n 6¼ p or q decays
exponentially, and the second-moment stability of the system is determined by the boundedness of zp�zzp, zq�zzq,
zpzq and �zzp�zzq, or equivalently by the real part of an eigenvalue of the coefficient matrix of the equations for
zp�zzp, zq�zzq, zpzq and �zzp�zzq being zero. That gives the same detuning parameter k shown in Eq. (27). Therefore,
in the absence of the random excitation, the first-moment and the second-moment stability criteria become

identical and are the same as that previously obtained by Liao and Huang (1995b). The case that bs is near

2xp can be obtained from the case that bs is near xp þ xq by letting q equal to p.
When the excitation frequency bs is near xp � xq, the first-moment stability criterion is still the one that

renders the real part of an eigenvalue of ½D1� in Eq. (24) being zero. That gives
k ¼ 	
c11pp þ c22pp þ c11qq þ c22qq

xp þ xq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpqKqp

c11pp þ c22pp þ c11qq þ c22qq
� ~aa2

s
; ð28Þ
where
Kpq ¼ fs g11pq

��
þ g22pq þ

1

2
bsð � h12pq þ h21pqÞ þ k11pq þ k22pq

�
þ i g12pq
�

� g21pq þ
1

2
bsðh11pq þ h22pqÞ þ k12pq � k21pq

��
and
Kqp ¼ fs g11qp

��
þ g22qp þ

1

2
bsð � h12qp þ h21qpÞ þ k11qp þ k22qp

�
þ i g12qp
�

� g21qp þ
1

2
bsðh11qp þ h22qpÞ þ k12qp � k21qp

��
:

The detuning parameter k in Eq. (28) is the same as that obtained by Liao and Huang (1995b). For the
second-moment response, Eq. (26) can be divided into two parts: the equations for zn�zzn , n 6¼ p or q, which
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are mutually independent, and the remaining four equations for zp�zzp, zq�zzq, zp�zzq and �zzpzq, which are still
coupled in the absence of the random excitation. The second-moment response zn�zzn for n 6¼ p or q decays
exponentially, and the second-moment stability of the system is determined by the boundedness of zp�zzp, zq�zzq,
zp�zzq and �zzpzq, or equivalently by the real part of an eigenvalue of the coefficient matrix of these four second-
moment equations being zero. That gives the same detuning parameter k shown in Eq. (28). Again, in the
absence of the random excitation, the first-moment and the second-moment stability criteria become

identical and are the same as that previously obtained by Liao and Huang (1995b).

When the spin rate of the beam is constant as the problem considered previously by the authors (2001),

the beam is acted upon by the random excitation only due to the axial force. In this situation, all the first-

moment equations are mutually independent, and the first-moment equations for different resonant fre-

quency combinations, Eqs. (18), (21) and (24), reduce to the same form with k and fs equal to 0. Therefore,
the first-moment stability criterion is the boundedness of all the first-moment response E½zn�, i.e., an < 0 for
n ¼ 1; 2; . . . ;N , and is irrelevant to the resonant frequency combinations.
The second-moment equations under different resonant frequency combinations, Eqs. (20), (23) and

(26), can be divided into two parts: the equations for zn�zzn, n ¼ 1; 2; . . . ;N , which are still coupled in the
absence of the parametric excitation, and the remaining two mutually independent equations for z2p and �zz

2
p

when bs is close to 2xp, for zpzq and �zzp�zzq when bs is near xp þ xq, and for zp�zzq and �zzpzq when bs is near

xp � xq . Since the equations for zn�zzn are self-complete, the remaining two equations for z2p and �zz
2
p, zpzq and

�zzp�zzq, or zp�zzq and �zzpzq are redundant when considering the second-moment stability of the system. Therefore,
the second-moment stability of the system is determined by the boundedness of all zn�zzn, or equivalently by
the real part of an eigenvalue of the coefficient matrix of the equations for zn�zzn being zero. Note that the
equations for zn�zzn reduce to the same form for different resonant frequency combinations in the absence of
the spin rate perturbation and are the same as that obtained previously by the authors (2001).
6. Numerical results and discussions

Before formally presenting the numerical results for the stability analysis, convergence studies of the

finite element model have to be conducted first. According to the suggestion by the previous study (Liao

and Dang, 1992), 25 uniform elements are used to model the spinning pre-twisted beam in this work. The
numerical results for the lowest few natural frequencies agree excellently with those obtained by Liao and

Dang (1992). As an application of the general solution, the spin rate perturbation is taken as

X1ðtÞ ¼ f cos bt, where f is assumed to be small compared to the average spin rate X0. Hence, the small

parameter e is defined as e ¼ f =X0. In addition, the random process P1ðtÞ=P0 is assumed as a Gaussian white
noise with a spectral density S; therefore, Sð0Þ ¼ Sððjp 	 jqÞbÞ ¼ S and wððjp 	 jqÞbÞ ¼ 0. However, nu-
merical results for more general periodic functions and other random processes can also be produced easily.

Moreover, all the numerical results in this work are presented in non-dimensional forms; therefore, b, X0

and P0 in this section represent the non-dimensional expressions b=x0, X0=x0 and PL2=EI0, respectively,
where x0 is the fundamental natural frequency of a free, non-spinning prismatic beam, i.e.,

x0 ¼ 3:5156
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI0=qAL4

p
.

Fig. 2 shows the effect of the viscous damping of the beam on the first-moment and the second-moment

stability boundaries of a pre-twisted beam with a non-constant spin rate under an axial random force at the

first main resonance b 
 2x1. In this figure, stability regions lie outside the stability boundaries. Note that,

in this case, the beam is stable when acted upon by the axial random force only; therefore, the stability

boundaries look like those subjected to the parametric excitation due to the spin rate perturbation only. It is

observed that an increase in the viscous damping will reduce the unstable regions predicted by the first-
moment and the second-moment stability criteria, respectively, and the effect on the second-moment sta-



(a) (b)

Fig. 2. The effect of the viscous damping on the stability boundaries of a pre-twisted cantilever beam with a non-constant spin rate

under an axial random force at the first main resonance b 
 2x1. L=b ¼ 10, h=b ¼ 0:25, c ¼ 90�, X0 ¼ 0:1, P0 ¼ 0:5, S ¼ 0:2. (a) First-
moment stability boundaries; (b) second-moment stability boundaries.
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bility boundary is more remarkable than on the first-moment stability boundary. Therefore, the viscous

damping is favorable to the stability of the pre-twisted beam in this problem. Furthermore, the unstable

region predicted by the first-moment stability criterion is smaller than and lies inside the unstable region

predicted by the second-moment stability criterion; therefore, the first-moment stability criterion is less

conservative than the second-moment stability criterion.

Fig. 3 depicts the effect of the total pre-twisted angle c on the second-moment stability boundaries of the
system. One finds that unstable regions exist only at main resonances but not at sum-type or difference-type

resonances. As the angle c increases, the locations of the first and third main resonances move towards the
higher frequency domain, but that of the second main resonance moves towards the lower frequency do-

main. Moreover, the size of the unstable regions reduces gradually for higher main resonances. Note that

the height of the tip of an unstable region is a good measure of the size of it. The lower the height is, the

larger the unstable region is, and vice versa. Fig. 4 illustrates the heights of the tips of these unstable regions

with respect to the total pre-twisted angle. As the angle c increases, the height of the tip of the unstable
region at the first main resonance goes upwards; the height of the tip of the unstable region at the second

main resonance goes downwards, while that of the unstable region at the third main resonance goes up-

wards first and then falls down when the angle exceeds 130�. These phenomena relate excellently to the
trends of changes of the first three natural frequencies of the pre-twisted beam against increases in the pre-

twisted angle.

The effect of the average spin rate X0 on the second-moment stability boundaries of the system is pre-

sented in Fig. 5. Again unstable regions exist only at main resonances, and the locations of the first and

third main resonances move towards the higher frequency domain, but that of the second main resonance

moves towards the lower frequency domain as the average spin rate increases. However, all unstable re-

gions become larger with an increase in the average spin rate. Consequently, the effect of the average spin

rate is destabilizing. The heights of the tips of the unstable regions of the pre-twisted beam with respect to
the average spin rate are shown in Fig. 6. As the average spin rate increases, the heights of the tips of all

unstable regions fall down drastically, and the tips of all unstable regions touch the horizontal axis at

X0 ¼ 0:191, at which the pre-twisted beam is unstable when spinning with a constant rate and subjected to
the axial random force (Young and Gau, 2003). The stability boundaries of the system do not exist any

more for a further increase in X0.
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Fig. 3. The effect of the total pre-twisted angle on the second-moment stability boundaries of a pre-twisted cantilever beam with a non-

constant spin rate under an axial random force at the free end. L=b ¼ 10, h=b ¼ 0:25, a ¼ 0:1, X0 ¼ 0:1, P0 ¼ 0:5, S ¼ 0:2. (a) c ¼ 45�;
(b) c ¼ 90�; (c) c ¼ 180�.
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Fig. 4. The heights of the tips of the second-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate

under an axial random force at the free end. L=b ¼ 10, h=b ¼ 0:25, a ¼ 0:1, X0 ¼ 0:1, P0 ¼ 0:5, S ¼ 0:2.
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Fig. 5. The effect of the average spin rate on the second-moment stability boundaries of a pre-twisted cantilever beam with a non-

constant spin rate under an axial random force at the free end; L=b ¼ 10, h=b ¼ 0:25, a ¼ 0:1, c ¼ 90�, P0 ¼ 0:5, S ¼ 0:2. (a) X0 ¼ 0:05;
(b) X0 ¼ 0:1; (c) X0 ¼ 0:15.
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Fig. 6. The heights of the tips of the second-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate

under an axial random force at the free end. L=b ¼ 10, h=b ¼ 0:25, a ¼ 0:1, c ¼ 90�, P0 ¼ 0:5, S ¼ 0:2.

T.H. Young, C.Y. Gau / International Journal of Solids and Structures 40 (2003) 4675–4698 4689



0 1 2 3 4 5
0.0

0.1

0.2

0.3

ε

β(a)

2ω1 2ω2 2ω3

0 1 2 3 4 5
β(b)

0.0

0.1

0.2

0.3

ε

2ω1 2ω2
2ω3

0 1 2 3 4 5
β(c)

0.0

0.1

0.2

0.3

ε

2ω1 2ω2
2ω3

Fig. 7. The effect of the average axial force on the second-moment stability boundaries of a pre-twisted cantilever beam with a non-

constant spin rate under an axial random force at the free end. L=b ¼ 10, h=b ¼ 0:25, a ¼ 0:1, c ¼ 90�, X0 ¼ 0:1, S ¼ 0:2. (a) P0 ¼ 0:3;
(b) P0 ¼ 0:5; (c) P0 ¼ 0:7.
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Fig. 8. The heights of the tips of the second-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate

under an axial random force at the free end. L=b ¼ 10, h=b ¼ 0:25, a ¼ 0:1, c ¼ 90�, X0 ¼ 0:1, S ¼ 0:2.
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Fig. 7 depicts the effect of the average axial force P0 on the second-moment stability boundaries of the
system. All unstable regions get larger and move towards the lower frequency domain with an increase

in the average axial force because an increase in the average axial force will reduce all natural frequencies of

the pre-twisted beam. Consequently, the effect of the average axial force is destabilizing. Fig. 8 illustrates
the heights of the tips of the unstable regions of the pre-twisted beam with respect to the average axial force.

As the average axial force increases, the heights of the tips of all unstable regions fall down slowly and drop

sharply as P0 approaches 0.715, where the pre-twisted beam becomes unstable when spinning with a
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Fig. 9. The heights of the tips of the first-moment unstable regions of a pre-twisted cantilever beam with a non-constant spin rate under

an axial random force at the free end. L=b ¼ 10, h=b ¼ 0:25, a ¼ 0:1, c ¼ 90�, X0 ¼ 0:1, P0 ¼ 0:5.
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constant rate and subjected to the axial random force (Young and Gau, 2003). The stability boundaries of

the system do not exist any more for a further increase in P0.
The heights of the tips of the first-moment unstable regions of the pre-twisted beam with respect to the

spectral density of the random part of the axial force are presented in Fig. 9. It is observed that the height of
the tip of each unstable region is almost unchanged to the variation of the spectral density. Therefore, the

effect of the spectral density on the first-moment stability of the system is insignificant. But the effect of the

spectral density of the axial random force on the second-moment stability boundaries of the system is much

more visible, as shown in Fig. 10. In this figure, all unstable regions lower and widen as the spectral density

increases, and the effect on the first main resonance b 
 2x1 is more evident than on the second main

resonance b 
 2x2. Therefore, the random part of the axial force is unfavorable to the second-moment

stability of the system.
7. Conclusions

The dynamic stability of a pre-twisted cantilever beam spinning along its longitudinal axis with a non-

constant spin rate and subjected to an axial random force at the free end is analyzed based on the theory of

both deterministic and stochastic averaging. The spin rate of the beam is characterized as the sum of a

constant (average) rate and a small, periodic perturbation function, and the axial force is assumed as the

sum of a static (average) force and a weakly stationary random process with a zero mean. It is demon-
strated that when the axial force is static, i.e., the beam is subjected to a deterministic parametric excitation

only due to the periodically varying spin rate, both the first-moment and the second-moment stability

criteria become identical and reduce to the result by Liao and Huang (1995b) at each resonant frequency

combination. When the spin rate is constant, i.e., the beam is subjected to a parametric random excitation

only due to the axial force, the first-moment stability criteria at different resonant frequency combinations

reduce to the same form, so are the second-moment stability criteria, which are the same as the result

obtained previously by the authors (2001).

As an application of the general solution, the spin rate perturbation is taken as a simple harmonic
function, and the random part of the axial force is assumed as a Gaussian white noise process in the nu-

merical illustrations. The effects of various system parameters on the first-moment and the second-moment

stability boundaries of the beam are investigated, and the following conclusions can be drawn:

(1) When the beam is stable if it is acted upon by the axial random force only, the stability boundaries of

the system when subjected to both deterministic (spin rate perturbation) and random (axial random

force) excitations look like the stability boundaries acted by the deterministic parametric excitation

only. When the beam is unstable if it is acted upon by the axial random force along, the beam is still
unstable when subjected to both deterministic and random excitations.

(2) For a beam with a periodically varying spin rate under an axial random force, unstable regions exist

only at main resonances but not at sum- or difference-type resonances, and the unstable regions reduce

gradually for higher main resonances.

(3) The viscous damping is favorable to the stability of the beam, and its effect on the second-moment sta-

bility boundaries is more remarkable than on the first-moment stability boundaries. The random part

of the axial force is unfavorable to the stability of the beam, and its effect on the first stability bound-

aries is insignificant.
(4) The effects of average spin rate and average axial force are destabilizing to the second-moment stability

of the beam at all main resonances, but the effect of the total pre-twisted angle to the second-moment

stability of the beam may be stabilizing or destabilizing at different main resonances.
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Appendix A
½rrT�j;k ¼
e
4

ðq11jj
h

þ q22jj þ iq12jj � iq21jj Þðq11kk þ q22kk þ iq12kk � iq21kk ÞzjzkSð0Þ

þ ðq11jk þ q22jk þ iq12jk � iq21jk Þðq11kj þ q22kj þ iq12kj � iq21kj Þ

� zjzkSððjj � jkÞbsÞ
i
; ðA:1Þ

½rrT�j;kþN ¼ e
4

ðq11jj
h

þ q22jj þ iq12jj � iq21jj Þðq11kk þ q22kk � iq12kk þ iq21kk Þzj�zzkSð0Þ

þ ðq11jk � q22jk � iq12jk � iq21jk Þðq11kj � q22kj þ iq12kj þ iq21kj Þ

� zj�zzkSððjj þ jkÞbsÞ
i

k 6¼ j; ðA:2Þ

½rrT�j;jþN ¼ e
4

XN
r¼1

ðq11jr
h(

� q22jr � iq12jr � iq21jr Þðq11jr � q22jr þ iq12jr þ iq21jr Þ � zr�zzrSððjr þ jjÞbsÞ

þ ðq11jr þ q22jr þ iq12jr � iq21jr Þðq11jr þ q22jr � iq12jr þ iq21jr Þ � zr�zzrSððjr � jjÞbsÞ
i)

; ðA:3Þ

½rrT�jþN ;k ¼ ½rrT�k;jþN ; ðA:4Þ

½rrT�jþN ;kþN ¼ e
4

ðq11jj
h

þ q22jj � iq12jj þ iq21jj Þðq11kk þ q22kk � iq12kk þ iq21kk Þ�zzj�zzkSð0Þ

þ ðq11jk þ q22jk � iq12jk þ iq21jk Þðq11kj þ q22kj � iq12kj þ iq21kj Þ

��zzj�zzkSððjj � jkÞbsÞ
i
; ðA:5Þ

Unðz1�zz1; . . . ; zN�zzN Þ

¼ e�zzn

(
� 2~aaðc11nn þ c22nnÞzn þ

1

4

XN
r¼1

½ðq11nr
�

þ q22nr Þðq11rn þ q22rn Þ � ðq12nr � q21nr Þðq12rn � q21rn Þ�znSððjn � jrÞbsÞ

þ ½ðq12nr � q21nr Þðq11rn þ q22rn Þ þ ðq11nr þ q22nr Þðq12rn � q21rn Þ�znwððjn � jrÞbsÞ

þ ½ðq11nr � q22nr Þðq11rn � q22rn Þ þ ðq12nr þ q21nr Þðq12rn þ q21rn Þ�znSððjn þ jrÞbsÞ

þ ½ðq12nr þ q21nr Þðq11rn � q22rn Þ � ðq11nr � q22nr Þðq12rn þ q21rn Þ�znwððjn þ jrÞbsÞ
�)

þ e
4

XN
r¼1

ðq11nr
h

� q22nr � iq12nr � iq21nr Þðq11nr � q22nr þ iq12nr þ iq21nr Þzr�zzrSððjn þ jrÞbsÞ

þ ðq11nr þ q22nr þ iq12nr � iq21nr Þðq11nr þ q22nr � iq12nr þ iq21nr Þzr�zzrSððjr � jnÞbsÞ
i

n ¼ 1; 2; . . . ;N ; n 6¼ p;

ðA:6Þ
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Up1ðz1�zz1; . . . ; zN�zzN ; z2p;�zz2pÞ

¼ e

(
� 2~aaðc11pp þ c22ppÞzp�zzp � fsðg11pp � g22pp � ig12pp � ig21ppÞ�zz2p

� 1
2
fsbsðih11pp � ih22pp þ h12pp þ h21ppÞ�zz2p � fsðk11pp � k22pp � ik12pp � ik21pp Þ�zz2p � �ffsðg11pp � g22pp þ ig12pp þ ig21ppÞz2p

� 1
2
�ffsbsð � ih11pp þ ih22pp þ h12pp þ h21ppÞz2p � �ffsðk11pp � k22pp þ ik12pp þ ik21pp Þz2p

þ 1
4

XN
r¼1

½ðq11pr
n

þ q22pr Þðq11rp þ q22rp Þ � ðq12pr � q21pr Þðq12rp � q21rp Þ�zp�zzpSððjp � jrÞbsÞ

þ ½ðq12pr � q21pr Þðq11rp þ q22rp Þ þ ðq11pr þ q22pr Þðq12rp � q21rp Þ�zp�zzpwððjp � jrÞbsÞ

þ ½ðq11pr � q22pr Þðq11rp � q22rp Þ þ ðq12pr þ q21pr Þðq12rp þ q21rp Þ�zp�zzpSððjp þ jrÞbsÞ

þ ½ðq12pr þ q21pr Þðq11rp � q22rp Þ � ðq11pr � q22pr Þðq12rp þ q21rp Þ�zp�zzpwððjp þ jrÞbsÞ
o)

þ e
4

XN
r¼1

ðq11pr
h

� q22pr � iq12pr � iq21pr Þðq11pr � q22pr þ iq12pr þ iq21pr Þzr�zzrSððjp þ jrÞbsÞ

þ ðq11pr þ q22pr þ iq12pr � iq21pr Þðq11pr þ q22pr � iq12pr þ iq21pr Þzr�zzrSððjr � jpÞbsÞ
i
; ðA:7Þ

Up2ðzp�zzp; z2pÞ

¼ 2ezp ixpkzp

(
� ~aaðc11pp þ c22pp þ ic12pp � ic21ppÞzp � fsðg11pp � g22pp � ig12pp � ig21ppÞ�zzp

� 1
2
fsbsðih11pp � ih22pp þ h12pp þ h21ppÞ�zzp � fsðk11pp � k22pp � ik12pp � ik21pp Þ�zzp

þ 1
8

XN
r¼1

ðq11pr q11rp
n

þ q11pr q
22
rp þ q22pr q

11
rp þ q22pr q

22
rp � q12pr q

12
rp þ q12pr q

21
rp þ q21pr q

12
rn � q21pr q

21
rp Þzp½Sððjp � jrÞbsÞ

� iwððjp � jrÞbsÞ� þ iðq11pr q11rp � q11pr q
22
rp þ q22pr q

11
rp � q22pr q

22
rp þ q12pr q

12
rp þ q12pr q

21
rp þ q21pr q

12
rn þ q21pr q

21
rp Þzp

� ½Sððjp � jrÞbsÞ � iwððjp � jrÞbsÞ� þ ðq11pr q11rp � q11pr q
22
rp � q22pr q

11
rp þ q12pr q

12
rp þ q12pr q

21
rp

þ q21pr q
12
rp þ q22pr q

22
rp q

21
pr q

21
rp Þzp½Sððjp þ jrÞbsÞ � iwððjp þ jrÞbsÞ� þ iðq11pr q11rp þ q11pr q

22
rp � q22pr q

11
rp

� q22pr q
22
rp � q12pr q

12
rp þ q12pr q

21
rp � q21pr q

12
rp þ q21pr q

21
rp Þzp½Sððjp þ jrÞbsÞ � iwððjp þ jrÞbsÞ�

o)

þ e
2

ðq11pp
h

þ q22pp þ iq12pp � iq21ppÞðq11pp þ q22pp þ iq12pp � iq21ppÞz2pSð0Þ
i
; ðA:8Þ
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Us1ðz1�zz1; . . . ; zN�zzN ; zpzq;�zzp�zzqÞ

¼ e

(
� 2~aaðc11pp þ c22ppÞzp�zzp � fsðg11pq � g22pq � ig12pq � ig21pqÞ�zzp�zzq

� 1
2
fsbsðih11pq � ih22pq þ h12pq þ h21pqÞ�zzp�zzq � fsðk11pq � k22pq � ik12pq � ik21pqÞ�zzp�zzq

� �ffsðg11pq � g22pq þ ig12pq þ ig21pqÞzpzq �
1

2
�ffsbsð � ih11pq þ ih22pq þ h12pq þ h21pqÞzpzq

� fsðk11pq � k22pq þ ik12pq þ ik21pqÞzpzq þ
1

4

XN
r¼1

½ðq11pr
n

þ q22pr Þ

� ðq11rp þ q22rp Þ � ðq12pr � q21pr Þðq12rp � q21rp Þ�zp�zzpSððjp � jrÞbsÞ þ ½ðq12pr � q21pr Þðq11rp þ q22rp Þ

þ ðq11pr þ q22pr Þðq12rp � q21rp Þ�zp�zzpwððjp � jrÞbsÞ þ ½ðq11pr � q22pr Þðq11rp � q22rp Þ þ ðq12pr þ q21pr Þ

� ðq12rp þ q21rp Þ�zp�zzpSððjp þ jrÞbsÞ þ ½ðq12pr þ q21pr Þðq11rp � q22rp Þ

� ðq11pr � q22pr Þðq12rp þ q21rp Þ�zp�zzpwððjp þ jrÞbsÞ
o)

þ e
4

XN
r¼1

ðq11pr
h

� q22pr � iq12pr � iq21pr Þðq11pr � q22pr þ iq12pr þ iq21pr Þzr�zzrSððjp þ jrÞbsÞ

þ ðq11pr þ q22pr þ iq12pr � iq21pr Þðq11pr þ q22pr � iq12pr þ iq21pr Þzr�zzrSððjr � jpÞbsÞ
i
; ðA:9Þ

Us2ðz1�zz1; . . . ; zN�zzN ; zpzq;�zzp�zzqÞ

¼ e

(
� 2~aaðc11qq þ c22qqÞzq�zzq � �ffsðg11qp � g22qp � ig12qp � ig21qpÞ�zzp�zzq

� 1
2
�ffsbsðih11qp � ih22qp þ h12qp þ h21qpÞ�zzp�zzq � �ffsðk11qp � k22qp � ik12qp � ik21qpÞ�zzp�zzq

� fsðg11qp � g22qp þ ig12qp þ ig21qpÞzpzq �
1

2
fsbsð � ih11qp þ ih22qp þ h12qp þ h21qpÞzpzq

� fsðk11qp � k22qp þ ik12qp þ ik21qpÞzpzq

þ 1
4

XN
r¼1

½ðq11qr
n

þ q22qr Þðq11rq þ q22rq Þ � ðq12qr � q21qr Þðq12rq � q21rq Þ�zq�zzqSððjq � jrÞbsÞ

þ ½ðq12qr � q21qr Þðq11rq þ q22rq Þ þ ðq11qr þ q22qr Þðq12rq � q21rq Þ�zq�zzqwððjq � jrÞbsÞ
þ ½ðq11qr � q22qr Þðq11rq � q22rq Þ þ ðq12qr þ q21qr Þðq12rq þ q21rq Þ�zq�zzqSððjq þ jrÞbsÞ

þ ½ðq12qr þ q21qr Þðq11rq � q22rq Þ � ðq11qr � q22qr Þðq12rq þ q21rq Þ�zq�zzqwððjq þ jrÞbsÞ
o)

þ e
4

XN
r¼1

ðq11qr
h

� q22qr � iq12qr � iq21qr Þðq11qr � q22qr þ iq12qr þ iq21qr Þzr�zzrSððjq þ jrÞbsÞ

þ ðq11qr þ q22qr þ iq12qr � iq21qr Þðq11qr þ q22qr � iq12qr þ iq21qr Þzr�zzrSððjr � jqÞbsÞ
i
; ðA:10Þ
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Us3ðzp�zzp; zq�zzq; zpzqÞ

¼ e iðxp

(
þ xqÞkzpzq � ~aaðc11pp þ c22pp � c11qq � c22qqÞzpzq � fsðg11pq � g22pq � ig12pq � ig21pqÞzq�zzq

� fsðg11qp � g22qp � ig12qp � ig21qpÞzp�zzp �
1

2
fsbsðih11pq � ih22pq þ h12pq þ h21pqÞzq�zzq

� 1
2
fsbsðih11qp � ih22qp þ h12qp þ h21qpÞ � zp�zzp � fsðk11pq � k22pq � ik12pq � ik21pqÞzq�zzq

� fsðk11qp � k22qp � ik12qp � ik21qpÞzp�zzp þ
1

8

XN
r¼1

½ðq11pr þ q22pr þ iq12pr � iq21pr Þðq11rp þ q22rp þ iq12rp � iq21rp Þ

� zpzqðSððjp � jrÞbsÞ � iwððjp � jrÞbsÞÞ þ ðq11pr � q22pr � iq12pr � iq21pr Þ
� ðq11rp � q22rp þ iq12rp þ iq21rp ÞzpzqðSððjp þ jrÞbsÞ � iwððjp þ jrÞbsÞÞ�

þ 1
8

XN
r¼1

½ðq11qr þ q22qr þ iq12qr � iq21qr Þðq11rq þ q22rq þ iq12rq � iq21rq ÞzpzqðSððjq � jrÞbsÞ � iwððjq � jrÞbsÞÞ

þ ðq11qr � q22qr � iq12qr � iq21qr Þðq11rq � q22rq þ iq12rq þ iq21rq ÞzpzqðSððjq þ jrÞbsÞ � iwððjq þ jrÞbsÞÞ�
)

þ e
4

ðq11pp
h

þ q22pp þ iq12pp � iq21ppÞðq11qq þ q22qq þ iq12qq � iq21qqÞzpzqSð0Þ

þ ðq11pq þ q22pq þ iq12pq � iq21pqÞðq11qp þ q22qp þ iq12qp � iq21qpÞzpzqSððjp � jqÞbsÞ
i
; ðA:11Þ

Ud1ðz1�zz1; . . . ; zN�zzN ; zq�zzq;�zzpzqÞ

¼ e

(
� 2~aaðc11pp þ c22ppÞzp�zzp � fsðg11pq þ g22pq þ ig12pq � ig21pqÞ�zzpzq �

1

2
fsbsðih11pq þ ih22pq � h12pq þ h21pqÞ�zzpzq

� fsðk11pq þ k22pq þ ik12pq � ik21pqÞ�zzpzq � �ffsðg11pq þ g22pq � ig12pq þ ig21pqÞzp�zzq

� 1
2
�ffsbsð � ih11pq � ih22pq � h12pq þ h21pqÞzp�zzq � �ffsðk11pq þ k22pq � ik12pq þ ik21pqÞzp�zzq

þ 1
4

XN
r¼1

½ðq11pr
n

þ q22pr Þðq11rp þ q22rp Þ � ðq12pr � q21pr Þðq12rp � q21rp Þ�zp�zzpSððjp � jrÞbsÞ

þ ½ðq12pr � q21pr Þðq11rp þ q22rp Þ þ ðq11pr þ q22pr Þðq12rp � q21rp Þ�zp�zzpwððjp � jrÞbsÞ

þ ½ðq11pr � q22pr Þðq11rp � q22rp Þ þ ðq12pr þ q21pr Þðq12rp þ q21rp Þ�zp�zzpSððjp þ jrÞbsÞ

þ ½ðq12pr þ q21pr Þðq11rp � q22rp Þ � ðq11pr � q22pr Þðq12rp þ q21rp Þ�zp�zzpwððjp þ jrÞbsÞ
o)

þ e
4

XN
r¼1

ðq11pr
h

� q22pr � iq12pr � iq21pr Þðq11pr � q22pr þ iq12pr þ iq21pr Þzr�zzrSððjp þ jrÞbsÞ

þ ðq11pr þ q22pr þ iq12pr � iq21pr Þðq11pr þ q22pr � iq12pr þ iq21pr Þzr�zzrSððjr � jpÞbsÞ
i
;

ðA:12Þ
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Ud2ðz1�zz1; . . . ; zN�zzN ; zp�zzq;�zzpzqÞ

¼ e

(
� 2~aaðc11qq þ c22qqÞzq�zzq � �ffsðg11qp þ g22qp þ ig12qp � ig21qpÞzp�zzq þ

1

2
�ffsbsðih11qp þ ih22qp � h12qp þ h21qpÞzp�zzq

� �ffsðk11qp þ k22qp þ ik12qp � ik21qpÞzp�zzq � fsðg11qp þ g22qp � ig12qp þ ig21qpÞ�zzpzq þ
1

2
fsbsð � ih11qp � ih22qp � h12qp

þ h21qpÞ�zzpzq � fsðk11qp þ k22qp � ik12qp þ ik21qpÞ�zzpzq þ
1

4

XN
r¼1

½ðq11qr
n

þ q22qr Þðq11rq þ q22rq Þ � ðq12qr � q21qr Þðq12rq

� q21rq Þ�zq�zzqSððjq � jrÞbsÞ þ ½ðq12qr � q21qr Þðq11rq þ q22rq Þ þ ðq11qr þ q22qr Þðq12rq � q21rq Þ�zq�zzqwððjq � jrÞbsÞ
þ ½ðq11qr � q22qr Þðq11rq � q22rq Þ þ ðq12qr þ q21qr Þðq12rq þ q21rq Þ�zq�zzqSððjq þ jrÞbsÞ þ ½ðq12qr þ q21qr Þðq11rq � q22rq Þ

� ðq11qr � q22qr Þðq12rq þ q21rq Þ�zq�zzqwððjq þ jrÞbsÞ
o)

þ e
4

XN
r¼1

ðq11qr
h

� q22qr � iq12qr � iq21qr Þðq11qr � q22qr þ iq12qr

þ iq21qr Þzr�zzrSððjq þ jrÞbsÞ þ ðq11qr þ q22qr þ iq12qr � iq21qr Þðq11qr þ q22qr � iq12qr þ iq21qr Þzr�zzrSððjr � jqÞbsÞ
i
;

ðA:13Þ

Ud3ðzp�zzp; zq�zzq; zp�zzqÞ

¼ e

(
þ iðxp � xqÞkzp�zzq � ~aaðc11pp þ c22pp þ c11qq þ c22qqÞzp�zzq � fsðg11pq þ g22pq þ ig12pq � ig21pqÞzq�zzq

� fsðg11qp þ g22qp � ig12qp þ ig21qpÞzp�zzp �
1

2
fsbsðih11pq þ ih22pq � h12pq þ h21pqÞzq�zzq

� 1
2
fsbsð � ih11qp � ih22qp � h12qp þ h21qpÞ � zp�zzp � fsðk11pq þ k22pq þ ik12pq � ik21pqÞzq�zzq

� fsðk11qp þ k22qp � ik12qp þ ik21qpÞzp�zzp þ
1

8

XN
r¼1

½ðq11pr þ q22pr þ iq12pr � iq21pr Þðq11rp þ q22rp þ iq12rp � iq21rp Þzp�zzq

� ðSððjp � jrÞbsÞ � iwððjp � jrÞbsÞÞ þ ðq11pr � q22pr � iq12pr � iq21pr Þ
� ðq11rp � q22rp þ iq12rp þ iq21rp Þzp�zzqðSððjp þ jrÞbsÞ � iwððjp þ jrÞbsÞÞ�

þ 1
8

XN
r¼1

ðq11qr
h

þ q22qr � iq12qr þ iq21qr Þðq11rq þ q22rq � iq12rq þ iq21rq Þzp�zzqðSððjq � jrÞbsÞ þ iwððjq � jrÞbsÞÞ

þ ðq11qr � q22qr þ iq12qr þ iq21qr Þðq11rq � q22rq � iq12rq � iq21rq Þzp�zzqðSððjq þ jrÞbsÞ

þ iwððjq þ jrÞbsÞÞ
i)

þ e
4

ðq11pp
h

þ q22pp þ iq12pp � iq21ppÞðq11qq þ q22qq � iq12qq þ iq21qqÞzp�zzqSð0Þ

þ ðq11pq � q22pq � iq12pq � iq21pqÞðq11qp � q22qp þ iq12qp þ iq21qpÞzp�zzqSððjp þ jqÞbsÞ
i
: ðA:14Þ
References

Carnegie, W., Thomas, J., 1972. The coupled bending–bending vibrations of pretwisted tapered blading. Journal of Engineering for

Industry 94 (1), 255–266.

Kammer, D.C., Schlack Jr., A.L., 1987a. Effects of nonconstant spin rate on the vibration of a rotating beam. Journal of Applied

Mechanics 54, 305–310.



4698 T.H. Young, C.Y. Gau / International Journal of Solids and Structures 40 (2003) 4675–4698
Kammer, D.C., Schlack Jr., A.L., 1987b. Dynamic response of a radial beam with nonconstant angular velocity. Journal of Vibration,

Acoustics, Stress, and Reliability in Design 109, 138–143.

Khas�minskii, R.Z., 1966. A limit theorem for the solutions of differential equations with random right-hand sides. Theory of

Probability and Its Applications 11, 390–406.

Liao, C.-L., Dang, Y.-H., 1992. Structural characteristics of spinning pretwisted orthotropic beams. Computers and Structures 45,

715–731.

Liao, C.-L., Huang, B.-M., 1995a. Parametric instability of a spinning pretwisted beam under periodic axial force. International

Journal of Mechanical Science 37, 423–439.

Liao, C.-L., Huang, B.-M., 1995b. Parametric resonance of a spinning pretwisted beam with time-dependent spinning rate. Journal of

Sound and Vibration 180 (1), 47–65.

Magrab, E.B., Gilsinn, D.E., 1984. Buckling loads and natural frequencies of drill bits and fluted cutters. Journal of Engineering for

Industry 106, 196–204.

Rao, J.S., 1972. Flexural vibration of pretwisted tapered cantilever blades. Journal of Engineering for Industry 94 (1), 343–346.

Sri Namachchivaya, N., 1989. Mean square stability of a rotating shaft under combined harmonic and stochastic excitations. Journal

of Sound and Vibration 133 (2), 323–336.

Subrahmanyam, K.B., Kulkarni, S.V., Rao, J.S., 1981. Coupled bending–bending vibrations of pretwisted cantilever blading allowing

for shear deflection and rotary inertia by Reissner method. International Journal of Mechanical Science 23, 517–530.

Subrahmanyam, K.B., Rao, J.S., 1982. Coupled bending–bending vibrations of pretwisted tapered cantilever beams treated by

Reissner method. Journal of Sound and Vibration 82, 577–592.

Swaminathan, M., Rao, J.S., 1977. Vibrations of rotating, pretwisted and tapered blades. Mechanism and Machine Theory 12, 331–

337.

Tekinalp, O., Ulsoy, A.G., 1989. Modeling and finite element analysis of drill bit vibrations. Journal of Vibration, Acoustics, Stress,

and Reliability in Design 111, 148–155.

Tekinalp, O., Ulsoy, A.G., 1990. Effects of geometric and process parameters on drill transverse vibrations. Journal of Engineering for

Industry 112, 189–194.

Young, T.H., 1991. Dynamic response of a pretwisted, tapered beam with nonconstant rotating speed. Journal of Sound and Vibration

150 (3), 435–446.

Young, T.H., Gau, C.Y., 2003. Dynamic stability of spinning pretwisted beams subjected to axial random forces. Journal of Sound

and Vibration (in press).

Young, T.H., Liou, G.T., 1992. Coriolis effect on the vibration of a cantilever plate with time-varying rotating speed. Journal of

Vibration and Acoustics 114, 232–241.

Young, T.H., Liou, G.T., 1993. Dynamic response of rotor-bearing systems with time-dependent spin rates. Journal of Engineering for

Gas Turbines and Power 115, 239–245.


	Dynamic stability of pre-twisted beams with non-constant spin rates under axial random forces
	Introduction
	Equations of motion
	The method of stochastic averaging
	The case of betas&ap;2omegap
	The case of betas&ap;omegap+omegaq
	The case of betas&ap;omegap-omegaq

	Stability analysis
	The case of betas&ap;2omegap
	The case of betas&ap;omegap+omegaq
	The case of betas&ap;omegap-omegaq

	Comparison with known results
	Numerical results and discussions
	Conclusions
	Appendix A
	References


